
Fastgraph® for Windows®
Version 6.02 Release Notes

Ted Gruber Software, Inc.
PO Box 13408

Las Vegas, NV 89112

(702) 735-1980 voice
(702) 735-4603 FAX

support@fastgraph.com
http://www.fastgraph.com

Copyright © 1995-2001 Ted Gruber Software, Inc.
All Rights Reserved.

http://www.fastgraph.com/

Introduction
The Fastgraph 6.02 for Windows (FGW) maintenance update provides improved printer support, DirectX
enhancements, floating point or integer texture coordinates, and other new functions. It also adds support for
Delphi 6.0 and fixes all problems reported since the 6.01 release. The 6.02 update includes updated
versions of the Fastgraph example programs that have changed in this release.

New versions of the Fastgraph 6.0 User's Guide, the Fastgraph 6.0 Reference Manual, and the Fastgraph
6.0 help file are not included here, but are available from http://www.fastgraph.com/help.html.

This distribution contains patch files, not full libraries or units. After you apply the patches, your FGW 6.01
libraries will be converted to version 6.02. Complete instructions for applying the update patches are
provided later in this document.

The FGW 6.02 update will work only if you have installed FGW from the version 6.01 CD, or if you have
installed FGW from the version 6.00 CD and applied the version 6.01 update.

In addition, the update will work properly only with the original libraries or unit files. If you have modified
these files in any way, you must re-install the original libraries, update the original libraries, and then make
your own modifications to the resulting libraries.

Before applying the FGW 6.02 update, you should make sure the disk drive on which the library or unit files
reside has at least 500K bytes of free space (this space is needed only during the update process). After the
update, all successfully patched files will be dated 07-18-01 (July 18, 2001) and have a 6:02 a.m. time
stamp.

The files in this distribution are:

FGW602.PDF This file
FGW602.RTP Fastgraph 6.02 update patches
PATCH.EXE RTPatch application utility program
FGWIN.H Fastgraph 6.02 header file for C/C++
ExBuilder1.zip Updated example programs for C++Builder 1
ExBuilder3.zip Updated example programs for C++Builder 3/4/5
ExC.zip Updated example programs for C/C++
ExDelphi.zip Updated example programs for Delphi
ExMFC.zip Updated example programs for MFC
ExPB.zip Updated example programs for PowerBASIC
ExVB.zip Updated example programs for Visual Basic

Fastgraph/Fonts and Fastgraph/Image Updates
Separate updates are available on the Fastgraph web page for Fastgraph/Fonts 6.02 and Fastgraph/Image
6.02. If you have either or both of these Fastgraph add-on products, you must also apply the patch updates
for those products after you apply the FGW 6.02 update.

New Features Added in Fastgraph 6.02
Fastgraph 6.02 offers improved printer support, DirectX enhancements, floating point or integer texture
coordinates, and other new capabilities. These features are described in the following sections, and also in
the function summary presented later in this document.

Improved Printer Support
The new fg_printdc() function establishes the printer device context, which directs subsequent printing to
the associated printer. Its only parameter is a handle to the printer device context; this is often obtained

http://www.fastgraph.com/help.html

through the Print dialog box. If you do not call fg_printdc(), or if you pass it a zero device context, printing
will be directed to the default Windows printer. The Prdemo example has been updated to use fg_printdc().

DirectX Enhancements
The new fg_ddmemory() function lets us specify if DirectDraw surfaces created with fg_vballoc() will
reside in video memory or in system memory (by default, such surfaces are created in system memory).
Video memory surfaces generally offer additional hardware acceleration. When both the source and
destination surfaces are in video memory, DirectDraw can usually take advantage of hardware-accelerated
blitting when copying between these surfaces. Passing 0 to fg_ddmemory() means DirectDraw surfaces
subsequently created with fg_vballoc() will reside in system memory; passing any other value means they
will reside in video memory. Note that fg_ddmemory() only applies to DirectDraw surfaces created with
fg_vballoc(). The DirectDraw primary surface (and its associated back buffer, if present) will always reside
in video memory.

The new fg_ddrestore() function provides an easier way to restore the DirectDraw primary surface and all
other DirectDraw surfaces that reside in video memory. Such surfaces must be restored upon return from a
task switch (Alt+Tab, for example). This function restores the surface memory, but not the surface contents.

The fg_ddmemory() and fg_ddrestore() functions are available only in Fastgraph's DirectX libraries.

Texture Coordinates
Fastgraph's texture mapping functions now support either integer or floating point texture coordinates. By
default, Fastgraph's texture mapping functions assume their (u,v) texture coordinate arrays contain integer
values. But when 3D clipping is applied to textures, floating point (u,v) coordinates can provide more
accurate results. The new fg_tmunits() function has a single integer parameter that specifies if the (u,v)
coordinate arrays use integer or single precision floating point values. If this parameter is zero, the texture
mapping functions assume integer (u,v) coordinates; if it is any other value, they assume floating point (u,v)
coordinates. Note specifically the use of single precision (32-bit) floating point texture coordinates here, not
double precision (64-bit). Single precision floating point means the type float in C and C++, and Single in
Delphi and Basic.

Other New Functions
The new fg_setcolorrgb() function establishes the current color by combining the effect of fg_setcolor()
and fg_maprgb(). When used with a 256-color virtual buffer, fg_setcolorrgb() will use the closest matching
color in the logical palette.

The new fg_vbtcopy() function copies a rectangular region from one virtual buffer to another, or to a non-
overlapping region in the same virtual buffer, excluding any pixels whose value matches the specified
transparent color. The transparent color is a logical palette index for 256-color virtual buffers, or an
fg_maprgb() encoded color value for direct color virtual buffers. As with Fastgraph's other block transfer
routines, no clipping is performed.

Applying the Fastgraph 6.02 Patch
Follow these steps to apply the Fastgraph 6.02 patch:

Step 1: Copy the files PATCH.EXE and FGW602.RTP to the directory where you've installed the Fastgraph
6.01 libraries or unit files, and make that directory your current directory. If you've installed FGW for more
than one compiler or platform and the library files reside in different directories, you'll need to apply the patch
from each such directory (see Step 5).

Step 2: If you're using Delphi, rename the DCU files as follows:

For Delphi 2.0:
 RENAME FGWIN*.DCU *.D20

For Delphi 3.0:
 RENAME FGWIN*.DCU *.D30
For Delphi 4.0:
 RENAME FGWIN*.DCU *.D40
For Delphi 5.0:
 RENAME FGWIN*.DCU *.D50
For Delphi 6.0:
 RENAME FGWIN*.DCU *.D60

Delphi 6.0 unit files do not exist for Fastgraph 6.01, so the 6.02 update uses the Delphi 5.0 unit files for
version 6.01 to create Delphi 6.0 unit files for version 6.02. Renaming the Fastgraph 6.01 Delphi 5.0 unit
files to a D60 extension will create Fastgraph 6.02 Delphi 6.0 unit files. Renaming them to a D50 extension
will create Fastgraph 6.02 Delphi 5.0 unit files.

Step 3: If you're using Watcom C/C++ 11, rename the library files as follows:
 RENAME FGWWC32.LIB FGWVC32.LIB
 RENAME FGWWC32D.LIB FGWVC32D.LIB

Step 4: Apply the patch by entering
 PATCH FGW602

from the DOS command line. The PATCH utility will update all Fastgraph 6.01 libraries and unit files found in
the current directory.

Descriptive messages will appear as the individual patches are applied. When the PATCH command
completes, it will display a summary showing how many files were updated and how many were "missing".
The missing files do not indicate a problem but merely mean you haven't installed FGW support for that
particular compiler or platform.

Step 5: If you've installed FGW for more than one compiler, you must repeat Steps 1 to 4 from each
directory where the library or unit files are stored for a given compiler. For example, suppose you've installed
FGW for Borland C++ (with library files in C:\BC5\LIB) and Delphi 5.0 (with unit files in C:\DELPHI5\LIB).
First copy the files PATCH.EXE and FGW602.RTP to the C:\BC5\LIB directory and issue the PATCH
command to update your Borland C++ libraries. Following this, update the Delphi units by copying
PATCH.EXE and FGW602.RTP to C:\DELPHI5\LIB and issue the PATCH command again. The order in
which you apply patches for different compilers does not matter.

Step 6: If you're using Delphi, rename the unit files back to their original names:

For Delphi 2.0:
 RENAME FGWIN*.D20 *.DCU
For Delphi 3.0:
 RENAME FGWIN*.D30 *.DCU
For Delphi 4.0:
 RENAME FGWIN*.D40 *.DCU
For Delphi 5.0:
 RENAME FGWIN*.D50 *.DCU
For Delphi 6.0:
 RENAME FGWIN*.D60 *.DCU

Step 7: If you're using Watcom C/C++ 11, rename the library files back to their original names:
 RENAME FGWVC32.LIB FGWWC32.LIB
 RENAME FGWVC32D.LIB FGWWC32D.LIB

Step 8: If you're using Visual Basic, you must now update the FGWin.bas and FGWinD.bas module files.
Copy the files PATCH.EXE and FGW602.RTP to the directory where you've installed the module files, and
make that directory your current directory. Then apply the patch again as done in Step 4.

Step 9: If you're using PowerBASIC, you must now update the FGWin.inc and FGWinD.inc include files.
Copy the files PATCH.EXE and FGW602.RTP to the directory where you've installed the include files, and
make that directory your current directory. Then apply the patch again as done in Step 4.

Step 10: If you're using C/C++ or C++Builder, copy the FGWIN.H header file to a directory where the
compiler normally searches for such files. The FGWIN.H file supplied in this distribution replaces the same
file from earlier versions of Fastgraph for Windows.

Step 11: After applying the patch, you may delete all extra copies of the PATCH.EXE and FGW602.RTP
files. You should keep one copy of these files in case you later install libraries for other compilers from the
Fastgraph 6.01 CD.

New Versions of the Fastgraph 6.0 Examples
We recommend updating your FGW example programs with the versions supplied in this distribution. You
can do this as follows:

C/C++ unzip ExC.zip into \FGW6\Examples\C
C++Builder 1 unzip ExBuilder1.zip into \FGW6\Examples\Builder1
C++Builder 3/4/5 unzip ExBuilder3.zip into \FGW6\Examples\Builder3
MFC unzip ExMFC.zip into \FGW6\Examples\MFC (use -d switch)
Delphi unzip ExDelphi.zip into \FGW6\Examples\Delphi
PowerBASIC unzip ExPB.zip into \FGW6\Examples\PB
Visual Basic unzip ExVB.zip into \FGW6\Examples\VB

Note that the above zip files contain only the example programs that have changed with this release.

If you've made any custom changes to the Fastgraph examples, you may first want to rename your modified
examples or move them elsewhere.

Problems Corrected in Fastgraph 6.02
For Delphi, the maximum number of virtual buffers has been increased to 256 (as it is for other compilers).

Support for DirectX versions 2 and 3 did not work. This problem was introduced in Fastgraph 6.01.

Direct3D z-buffer creation now works for DirectX implementations that require z-buffers to use the same bit
depth as the primary surface, even if they offer higher z-buffer bit depths.

All arc, circle, and ellipse functions can now draw larger objects. Previously, these functions could not draw
objects if the horizontal radius multiplied by the vertical radius was greater than 1024*1024.

The native Gouraud shading functions did not always draw large polygons correctly when using 24-bit and
32-bit virtual buffers.

The fg_aviplay() and fg_showavi() functions now work with 16-color, high color, and 32-bit true color
uncompressed AVI files.

Passing zero for the fg_avimake() compressor parameter did not create an uncompressed AVI file.

The fg_aviplay() function had a palette problem that occurred when creating a 16-color BMP file with
fg_makebmp() after displaying a 16-color AVI file.

Calling fg_kbtest(0) did not report the key state correctly on some systems.

The fg_tmfree() function did not fully release the texture handle when using Fastgraph's DirectX library with
Fastgraph's 3D rendering.

The fg_tmtransparency() declaration was not correct in the Visual Basic module files and the PowerBASIC
include files.

The fg_vballoc() function did not work after calling fg_tmdefine() when using Fastgraph's DirectX library
with Direct3D.

Passing a negative value to fg_vbfree() resulted in a memory leak.

The DirectX version of fg_vbtzcopy() could not attach a color key with certain DirectX implementations. In
such cases, fg_vbtzcopy() will now use Fastgraph's own blitting.

	Version 6.02 Release Notes
	Introduction
	Fastgraph/Fonts and Fastgraph/Image Updates
	New Features Added in Fastgraph 6.02
	Improved Printer Support
	DirectX Enhancements
	Texture Coordinates
	Other New Functions

	Applying the Fastgraph 6.02 Patch
	New Versions of the Fastgraph 6.0 Examples
	Problems Corrected in Fastgraph 6.02

