Fastgraph” 6.0

for Windows"

Reference Manual

Copyright © 1995-2003 by Ted Gruber Software, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any means, electronic, mechanical, photocopying, recording, or otherwise, without express written
permission from Ted Gruber Software. The software described in this publication is furnished under a license
agreement and may be used or copied only in accordance with the terms of that agreement.

This publication and its associated software are sold without warranties, either expressed or implied, regarding
their merchantability or fithess for any particular application or purpose. The information in this publication is
subject to change without notice and does not represent a commitment on the part of Ted Gruber Software. In
no event shall Ted Gruber Software be liable for any loss of profit or any other commercial damage, including
but not limited to special, incidental, consequential, or other damages resulting from the use of or the inability
to use this product, even if Ted Gruber Software has been notified of the possibility of such damages.

Fastgraph for Windows version 6.03

Fastgraph(is a registered trademark of Ted Gruber Software, Inc.
Windows[, Direct3D0, DirectDraw(], and DirectX[are registered trademarks of Microsoft Corporation.

All other brand and product nhames mentioned in this publication are trademarks or registered trademarks of
their respective holders.

Table of Contents

[aLUgoXo [UYox {0} o PP PPPPPPPPPPI 1
Lo RS 1 D= g =¥ 1 [| =T 2
Lo RS 1 D= M q=¥= 1 Lo LT] o] [=T o] A) I 3
fO_3DDENINAVIEWET() ..o et e e e e e e et e e e e e e e eeeenaees 4
Lo RS 10 1= 4 g = 11 g T TSRS 5
L8 RS 130 =3 4 o Lo 17 (I 6
L8 S 15 T 4= T 7
L8 RS 152 o Lo <= L () I 8
L0 RS 150 410 17T) PSPPSR 9
fO_3DMOVETOIWAIA() . oeeeeeeeeiiiee e e e e et eeeeeaaaae 10
fg_3DMOVEfOrwardobECT() . ..uuuiiiiiiiiiiiiii e 11
Lo RS 1 4o V7 =To] o] 1T o) ISR 12
FO_3DMOVEITGNT() - 13
o RS 1) 04 TeAVZ=T g o] gL o] o] =T o] A) ISR 14
Lo RS 15 0 4 To A7 =T U | o ISR 15
fO_3DMOVEUPODJECT().ereeeeiiiiiiiiiiiiei i 16
FO_BDPOIYGON() it 17
fO_3DPOIYGONODJECT() +evveerreeieiiiieiie et 18
L8 S 15« o 1Y/) LS 19
L0 RS 15 o] o] =1 X) U 20
Lo RS 1D =T g Lo [T €] = =T) PSPPI 21
L0 RS 15 0111) ISR 22
FO_BDIOIODJECT(). e 23
L0 RS 1) 0] =1 =T) R TRTRRR 24
Lo RS 1 D) o] £=14=To] o] =T o A () SRR 25
Lo RS 1D o] =1 4=T o 1 (R 26
fg_3Drotaterightob ECT() «euvern e e e e e eeaees 27
FO_3DIOTATEUD () --uunueuenneii e 28
f_3Drotat@UPODJECT() .evererrreieiiiiiieiie it 29
Lo RS 1D ST=] {0 = 18 D RS 30
FO_3DSEEODJECT() - 31
L0 RS 1D SY= 4o 11 o1) 1RSI 32
L0 RS 19253 =T =T) U 33
Lo RS 1 DS g =T 1Yo o] =T () I 34
Lo RS 1D =) QU1 =] 4= o (S 35
fg_3DtexturemapOBDJECT() ... et 36
Lo RS 1D = 14 17 o 1 o £ () ST 37
fg_3DtranSformMODJECT(). 38
L0 RS 1 D8] V=T o (o 1 ¢ () T 39
L8 RS 1 DAV A 1=, o 1 () T 40
L0 RS 197 o] 11 o 1) PR 41
Lo RS 17 o] 1] o1] « 1 PSR 42
FO_BDZCIIPEMI() e 43
L8 = L o] (ST 45
L8 = U031 U 46
Lo = V2 [(o 1 1= (SRR 47

Lo T VAL = L= RN 48

L0 = VAL == o [(I 49
Lo I NV L= U= USSP 50
Lo = VA0 Y 0= a1) 52
Lo = VAT S = UL) I 53
Lo = VAT S 1 =Y/ () 54
Lo I VA ST =1) SN 55
L0 VA =1 G o1 I 56
L0 01 L= 1. 1 T 57
Lo I 01 L= 10 15 T 58
Lo I 01 F=] 0o [o Ko oY) I USPPPRTN 59
Lo 01 L= 00 AV Z= U) 60
Lo 01 (= 10 AV« 1 P 61
Lo 01 £=1 00 AV ¢ V7 (T 62
FO_ DMPNEAT() ceeveiiiii e 63
FO DMPPAI() c o ——— 64
FO DMPSIZE() i e aaaaaaan 65
L0 T 0 L0 0 (T 66
Lo o L0 D 1= 014 o 1 I 67
L0 T 0 L0 24T T 68
L0 T 0 L0 020 T (I 69
L0 T 0 L0 20 AT I 70
Lo T 1 e L= PSP 71
Lo T e =31 PSRN 72
Lo TR Lo =TT PSP 73
Lo TR Lo =0T PSPPSR 74
Lo I 11 0 22V o (T 75
Lo 11 o Xo L] o 1) 77
Lo I 11 01 11> o1 PSPPSR 78
Lo T 1] o1 L = 151 4 ISR 79
Lo T o XL =T 1= SRR 80
Lo 1 01 (=) 81
Lo 1 01 (= 44V (T 82
L0 T 1 01 (= 0 €) 83
Lo T 01 Lo =3 () PSP 84
Lo T 0 1] o o3 o) 85
Lo T 0] 114 e | (S 86
Lo T 0 1117 <1 87
Lo TR0 €Y7 0 T=Te =1 (T 88
L0 L S 89
L0 010 o o T () T 90
L0 =53 11 91
L0 e F= 53 11 = L PSP 92
L0 e =53 11 71T (SR 93
L0 e =53 1110 IS 94
Lo e o F=T 07 0117/ (T 95
17 T 0 (o L o SRS PRRPPR 96
Lo e o L 1T 0T 01T) T 97
Lo e o L= Ut =T) ISR 98

Lo e o L1 =TT Ko () I 99

1o o o Lo 1] o o3 () ISP 100
{0 o o Lo 1] o o | (S 101
{0 o Lo T= RV Z=TE T o] o PO 102
L0 e Lo | o Yo) TSP 103
Lo e Lo [aY=T 0 4 T0T oY/ (P 104
L0 e Lo [=13 (0] =T 105
L0 e o £ =1 4 o1 1 (R 106
L0 e o £ =1 o] o T () RSP 107
L0 e o £ =1 AU o) P 108
{0 e [0 EY= AVZ=T RST o 1 (F PP SSP 110
L0 e Lo £ = LU £ R 111
1o o o VT 01 o To3) IO 112
L0 e Lo [UE=¥= o[- () S 113
L0 e =3 {e 0] o 1 () ISP 114
L0 e =31 o = LI) PP 115
L0 e 1ES3 011 L= RSP 116
Lo e 1ES3 01 1=\ Y/ (S 117
L0 e 1ES3 01 F= 1Y/ o X) RSP 118
1o e 1= U TSP 119
1o e = U0 (o] oY) PSP 120
Lo e L= U A 1 0= oY) PP 121
FO_ AraWmMaAasSK (). oo oo 122
1o e L= U2 =) PSP 123
1o e L= U A =] D PSSP 124
1o e L= U2 T PSSP 125
Lo e L= U2 04T PP 126
10 e L= U ALY (PSP 127
10 e L= U2 TP 128
1o e L= U2 (PSSP 129
1o e = U774 PSSP 130
10 o 1 (=o€ () P 131
L0 e 1= A1V (R 132
Lo L AT 1 =T =T IS 133
L0 =] LT o= T= ISP 134
L0 = LT o= T= SR 135
Lo T LT =TT IS 136
L0 = LT oS3 ATV (ISP 137
L0 L= FL=) PSSR 138
Lo LT 111 0=V 1= S 139
Lo LT Lo 1] (RSP 140
L0 LT e LY (SR 141
L0 LT =0 S 142
FO FIXIMUL() e e 143
10 LT D e T 144
1o L oo Ko T =T () TP 145
L0 L Lo 4 1= T I S 146
Lo L LK oT o] =T a1 PSSP 147
L0 L Lo o1 =Y/ (RSP 148

1o L L2 =T L= (P 149

10 L LT 2=] T oY PP 150
17 T 1 0o L] o1 U TR OPRPRPR 151
FO FHPMASK()errenniii e e 152
L0 L e = 4 TSP 153
10 L (o X0 o 1) T 154
1o L Lo X0 o K.V () I 155
Lo L1 <18 1= Ve L= R 156
L0 L0 1 o [() S 157
Lo e] 14 o = To 1) ISP 158
fO_ gamMMAACD() cuvveniii e 159
o e E= 0 0] 4 = U] o1 () P 160
1o e F= 12 01 4 1= 1Y o1 T 161
170 e Lo 11 LT oY USROS PRPRPR 162
L0 e =11 0] Ko To3 () P 163
L0 e =10 o] 11 o) RSP 164
L0 e =1 (o] Lo o) T 165
Lo e L= (o 0] Fo 1 () ISR 166
1o T =10 = Vo] (PP 167
L0 e =210 Lo () TSP 168
L0 e =210 Fox o 1 () S 169
L0 e =100 F=T 0 14 o1 () ISP 170
FO GEtNCBPP() oo e 171
Lo e L= a1 o=V 1= (RS 172
Lo e L= = Ve L=) IR 173
Lo e L= Yo =27 174
Lo e L= L =T S 175
Lo e L= L =S P 176
1o e L= g = 1 o1 PSS 177
1o T =100 0T 30 TSP 178
1o e L= g = Q) PSSP 179
Lo e =11 = Vo = () PSSP 180
L0 e =11 01 4= I RS 181
Lo e L= 0 | o X) ISR 182
Lo e L= AV LT ISP 183
Lo e [=2107274 0 1 Ko [IR 184
L0 e =10 oo D () PP 185
L0 e =10 q U =3 € S 186
L0 e =104 o o 11 () PSSP 187
L0 e =177 0 Lo b2 q (PR 188
L0 e =107/ 1 E3 (P USPP 189
L0 e =177 0 Lo 1= (PSP 190
1o o Lo TV T =10 o 1) S 191
{0 o Lo U1 =10 To I (PP 192
1o e = 120 [o] o X) PSSP 193
Lo e = 1A e | 1 IS 194
1o e = 1Y AT 01 P 195
fO_IMAgEDUT() coeeeeie e 196
Lo T T= (o T=E] A) I 197

Vi

L0 L1071V ISP 198

L0 ST o 1= (SR 199
L0 70 [+ o X) TSP 200
Lo T Y= R 201
Lo T S L=T0 | o LU) USSP 202
Lo T S L=T0 | == Lo [RPN 203
Lo T S L=Te T T=] 041 S 204
Lo T S L=T0 T 4=) I 205
1o LU 3 L1 PSSP 206
L0 4 01 =S € TSP 207
L0 Lo T= Lo | oo) TSP 208
L0 I Lo Xo= 1 (=Y (S 209
L0 T Lo X o 1 1 1) ISP 210
1o Lo Yo] = LI PSS 211
fO MAKEDMP() e 212
1o T L= U= o o3t q) ISP 214
Lo T L= L CCT o] oL R 215
1o T = UGS o1 TP 216
1o T = Vo Lo = o3 =] () TS 217
Lo L= 0 0 oY) I USSP 218
(o T LA T=T= UL =T PP 219
Lo T LA =T 002 V2= V1 P 220
Lo L e T K= oY= () RSP 221
Lo T Lo T K= =23 1 (S 222
1o T o TU =T =Tod U1 (PSS 223
Lo L Lo 1O E=T=TH oL PP 224
Lo T LA L TUE=T=1 T o PP 225
Lo T L Lo 1O E=Y=T 0 ¢ Lo AV) SR 226
Lo T L Lo TUE=Y=T o Lo 1= S 227
1o L Lo TUE=T=T o1 (S 228
(o T o V=T =E] 4) ISR 229
Lo T LA L 1O E=T= VAT RS 230
Lo L L0 NV (ISP 231
L0 L L NV T 1) S 232
Lo L L NV =1 1 PRSP 233
Lo T L L NV TV S 234
Lo L L AV) ISP 235
L0 0] 0= (o3 1 8) R 236
10 N 0 = (o) I 237
Lo L= Te TSI 4=) IS 238
L0 T o = UL 1 € TSR 239
L0 T o= UL 11 T) TSP 240
L0 0= 53 (=1 (S 241
L0 0253 (=T o o1 () R 242
L0 0031 q 11T T I) S 243
L0 0 L0314 0 = 1 (RSP 244
Lo oo G = 1 [o 1= (S 245
1o oo €=T 4=) ISP 246
fO PROTOACH () e e 247

fO PhOLOIGD() oo —————— 248

FO PNOTOVI() eeen i ————————— 249
L0 T o Lo 1101 € RPN 250
Lo o Lo 111 0TV (RSP 251
L0 o Lo 11 01 0 €) S 252
L0 o Lo 11 1 0411V (USSP 253
Lo o Lo 1YZ=To Lo [T (PP 254
L0 T o o1 17211 TSP 255
1o o Lo 1Y/ 11 4 (P 256
1o o X 1177 [1 1 (S 257
FO POIYGONW() e 258
Lo o Lo 1Y L = RSP 259
FO POIYOTT() oo e aaaaaan 260
1o o1 1 4L (S 261
10 o1 1 41 (o Ko () ISP 262
Lo oL AT LT (PSP 263
1o o1 o T =13 1 (P 264
L0 I o 1V 14 o1 Lo o) 265
L0 N o 1V 1o o] o) 1SS 266
Lo o LU AT L= Te [T (SR 267
L0 T oLV 8 010 =) RSP 268
Lo ST L4~) I 269
Lo =11 X TSP 270
Lo =103 T4 TR 271
L0 =103 4 TSP 272
L0 =10 1V o] = () S 273
L0 TS o 1= I 274
Lo TCCES] (o L =T (S 275
L0 =177 o3 1 276
Lo TNV L= 1o L= RSP 277
Lo TR0 1= 151 (S 278
L0 0L =L =T (S 279
L0 0L == T 1) ISP 280
L0 010 [o X () IS 281
1o 0L €74~ 282
10 ST V= (PP 283
Lo ST VST S 284
10 ST o= L= () PP 285
fO SCAIEACD () .. ———————— 286
10 o] (0 1 287
FO SELAIPNA() . e e e 289
1o ST = Ua Lo | =T (PR 290
10 ST =] (o] 1T oY) PP 291
1o ST (od 1T 01T () PSR 292
{0 ST =] (T] Lo o () ISP 293
{0 ST (T] Lo o | o (PSSP 294
10 ST =] Ko = To2=Y () PSS 295
10 ST =] o Lo () TP 296
FO SEINPAGE() oo eeeei e ———————— 297

1o ST =16 o= o =T (PSS 298

Lo ST SL =1 T X) PSS 299
1o ST =1] o1 PSSR 300
Lo TS EST 4=) ISP 301
Lo ST EST 4=V (P 302
1o ST SL AV AT A PP 303
1o ST VLo T Lo [P 304
L0 ST A == L TSP 305
Lo TIRST A== o o] o) T 307
L0 IRST A Lo AT TE= AV AT ISP 309
Lo TIEST A Lo 71T o T 01 oY I 311
L0 ST 4 Lo 1T1T4 £ o () USSP 313
Lo ST A Lo AT TAT o L= T S 315
L0 ST A Lo 71T o o€ P 316
Lo ST 4 Lo 7174 o] o1 ¢ (RSP 318
Lo ST A Lo AT TA=Y oL) ISP 319
L0 S = 1L ISP 320
L0 S =) TSP 321
L0 ST A =T 010 1 T (P 322
L0 S A =3 X ISP 323
Lo T o0 L= T A T=) P 324
10 o 0 4= T3) PSR 325
L0 03 G L=) S 326
L0 =G0 1= o RS 327
Lo TG 1= o o1 RSP 328
Lo T2 1= o ¢ 74) S 329
1o T =G0 1= o 74 () P 330
L0 =2 (SRR 331
L0 =L UL =T (P 332
FO IMAEIINE() coieeeiiiiee e e 333
10 T 1 412N 1] € P 334
FO EMTTEE() oo e 335
1o 0 1T) 336
10 T 1A EST =1 L=Tod 1 PSSP 337
FO EMSPAN() o oeiiiieiiie e 338
fO IMErANSPArENCY (). . cceiiiiiiiiie e e e e e e e e 339
1o T 141U T QT €= (P 340
FO EraNSACD () coeeeeiiiiie e e 341
10 T = LA 13 1 P 342
L0 L8 e 1 PSPPI 343
FO UNMAPTGD() i 344
1o TS 1] o = U] (S 345
L0 T4 0 2o] LT o (RSP 346
L0 T4 0= e [1) TS 347
L0 T4 0= UL Lo 1o (ISP 348
L0 T4 0 Lo Lo 1= =1 (ISR 349
L0 T4 o LoT0] (o1 5= IS 350
L0 T4 o Lo30] ¢)Y/ () SR 351
L0 YA 010 11 1T 4 L=T () RPN 352

L0 YA 010 1] o 11 o 1) P 353

L0 Y4 01 1L TSP 354
L0 T4 S L=< SR 355
L0 T4 0L = 1 o | 1= (S 356
L0 T4 < L1 11 ¥ TR 357
FO VD OPEN() e e —————————— 358
L0 YA 0] 0= 1= €=) S 359
L0 T4 0 1 1 1 € ISP 360
FO VDS CAIE() cuvueni i e ———————— 362
1o T4 ST A= (S 364
L0 T4 S (e o0 ¢)Y/ (S 365
L0 T4 S (o0)Y/ (PSP 367
10 T4 0194 odoT 0}) 369
FO VDUNAEI() eeeniiie e 370
L0 A= 6T 101 (S 371
L0 T AT o [RS 372
10 2= U101) PSSP 373
L0 A L= L= TSP 374
FO XAIPNA() ceiieiii i ——————— 375
L0 T 1T 0L PSP 376
L0 0T 1 1VZ=] X RSP 377
1o o] C=1=1 S 378
L0 D474 o1 IS 379
L0 T A= ISP 380
L0 QT2] o (USSP 381
L0 2= UL oL = 1) ISP 382
L0 A 1= 011 (ISP 383
Lo AT 1 0 1Z=1 & 1) SR 384
L0 2T == 1 P 385
L0 A7 ¢ (RSP 386
L0 AT A =T RSP 387
L0 A0 Lo 1 SRR 388
L0 4 o = 11 [Yo () IS 389
FO_ ZDFramMeE() oo —————————— 390
L0 4 1 1 == RSP 391
10 4 0 10T o 1= 1 (1SS 392

Fastgraph 6.0 Reference Manual « 1

Introduction

The Fastgraph 6.0 Reference Manual provides an alphabetical summary of Fastgraph
functions, with the following information presented for each function:

function prototypes or declarations for each supported language

a description of the function itself

the number of parameters, their purpose, and their data types

the meaning and data type of the function's return value (if any)
information about important restrictions pertaining to the function
references to similar functions, or other functions that affect the function

example programs in the Fastgraph 6.0 User's Guide that use the function

This manual includes information about Fastgraph legacy functions in case you encounter them in
programs developed with earlier versions of Fastgraph. Legacy functions are still included in
Fastgraph, but they have been replaced by other functions and may not be supported in future
releases. We therefore recommend that new applications avoid using the legacy functions, and
where possible, you eliminate them from existing programs. Legacy functions are identified as such
in the function descriptions; they are also listed in Appendix D of the Fastgraph 6.0 User's Guide. For
legacy functions, the "Replaced by" section lists the individual function or group of functions with the
same or enhanced functionality.

2 « Fastgraph 6.0 Reference Manual

fg_3Daxisangle()

Prototype
C/C++ i nt fg_3Daxi sangl e (double x, double y, double z, int Angle);
C# int fg. 3Daxisangle (double x, double y, double z, int Angle);
Delphi function fg_3Daxisangle (x, y, z : double; Angle : integer)
i nt eger;
VB Function fg_3Daxisangle (ByVal x As Double, ByVal y As Doubl e,

ByVal z As Double, ByVal Angle As Long) As Long

VB.NET Function fg_3Daxi sangle (ByVal x As Double, ByVal y As Doubl e,
ByVal z As Double, ByVal Angle As Integer) As Integer

Description

The fg_3Daxisangle() function rotates the viewer's orientation by the specified angle around an
arbitrary axis through the 3D world space origin.

Parameters
x is the x coordinate of a vector defining the axis of rotation.
y is the y coordinate of a vector defining the axis of rotation.
z is the z coordinate of a vector defining the axis of rotation.

Angle is the rotation angle, expressed in tenths of degrees. If Angle is positive, the viewer rotates
clockwise. If Angle is negative, the viewer rotates counterclockwise.

Return value

If successful, fg_3Daxisangle() returns zero. It returns -1 if the vector's magnitude is too close to
zero.

Restrictions
none
See also
fg_3Daxisangleobject(), fg_3Dlookat(), fg_3Dpov(), fg_3Drotate()

Fastgraph 6.0 Reference Manual « 3

fg_3Daxisangleobject()

Prototype

C/C++ i nt fg_3Daxi sangl eobj ect (double x, double y, double z,
Angl e) ;

C# int fg. 3Daxi sangl eobj ect (double x, double y, double z,
Angl e) ;

Delphi function fg 3Daxi sangl eobject (x, y, z : double; Angle :
i nteger) : integer;

VB Functi on fg_3Daxi sangl eobj ect (ByVal x As Doubl e, ByVal

Doubl e, ByVal z As Double, ByVal Angle As Long) As Long
VB.NET Function fg 3Daxi sangl eobj ect (ByVal x As Doubl e, ByVal

Doubl e, ByVal z As Double, ByVal Angle As Integer) As Integer

Description

The fg_3Daxisangleobject() function rotates an object by the specified angle around an arbitrary

axis through its origin.

Parameters
x is the x coordinate of a vector defining the axis of rotation.
y is the y coordinate of a vector defining the axis of rotation.

z is the z coordinate of a vector defining the axis of rotation.

Angle is the rotation angle, expressed in tenths of degrees. If Angle is positive, the object rotates

clockwise. If Angle is negative, the object rotates counterclockwise.

Return value

If successful, fg_3Daxisangleobject() returns zero. It returns -1 if the vector's magnitude is too

close to zero.
Restrictions
none
See also

fg_3Daxisangle(), fg_3Drotateobject(), fg_3Dsetobject()

4 « Fastgraph 6.0 Reference Manual

fg_3Dbehindviewer()

Prototype

C/C++ i nt fg_3Dbehi ndvi ewer (double x, double y, double z,
Tol erance) ;

C# int fg. 3Dbehi ndvi ewer (double x, double y, double z,
Tol erance) ;

Delphi function fg 3Dbehi ndvi ewer (x, y, z, Tol erance : double)
i nt eger;

VB Function fg_3Dbehi ndvi ewer (ByVal x As Doubl e, ByVal

Doubl e, ByVal z As Double, ByVal Tol erance As Double) As Long

VB.NET Function fg_3Dbehi ndvi ewer (ByVal x As Doubl e, ByVal

Doubl e, ByVal z As Double, ByVal Tolerance As Double) As

I nt eger

Description

The fg_3Dbehindviewer() function determines if the specified 3D world space point is visible

from the viewer's current position.

Parameters
x is the x coordinate of the point in 3D world space.
y is the y coordinate of the point in 3D world space.

z is the z coordinate of the point in 3D world space.

Tolerance defines the visibility extent. If negative, Tolerance specifies the distance behind the
viewer beyond which points are invisible. If positive, Tolerance specifies the distance in front of

the viewer beyond which points are visible. The value of Tolerance is often zero.
Return value

The return value will be 1 if the specified point is visible, or zero if it is not visible.
Restrictions

none
See also

fg_3Dlookat(), fg_3Dpov()
Examples

Columns

Fastgraph 6.0 Reference Manual « 5

fg_3Dgetmatrix()

Prototype
C/C++ void fg 3Dgetmatrix (double *Matrix, int Flag);
C# void fg. 3Dgetmatrix (ref double Matrix, int Flag);
Delphi procedure fg 3Dgetmatrix (var Matrix : double; Flag : integer);
VB Sub fg_3Dgetmatrix (Matrix() As Double, ByVal Flag As Long)
VB.NET Sub fg 3Dgetmatrix (ByRef Matrix As Double, ByVal Flag As
I nt eger)
Description

The fg_3Dgetmatrix() function retrieves the elements from one of Fastgraph's 3D rotation,
translation, or transformation matrices. This function is provided for the benefit of experienced 3D
programmers who need access to Fastgraph's internal 3D matrices.

Parameters

Matrix is the name of the array that will receive the matrix values. It must be large enough to hold
12 eight-byte (double) floating point numbers. The first four elements of Matrix will receive the
four values from the first row of the specified matrix, the next four elements will receive the values
from the second row, and the last four elements will receive the values from the third row.

Flag specifies which matrix to retrieve:

FG_OBJECT_ROTATION object to world rotation
FG_OBJECT_TRANSLATION object to world translation
FG_OBJECT_TRANSFORM object to world transformation
FG_WORLD_ROTATION world to view rotation
FG_WORLD_TRANSLATION world to view translation
FG_WORLD_TRANSFORM world to view transformation
FG_COMBINED_TRANSFORM object to view transformation

If Flag is not one of the above values, Matrix will be left unchanged.
Return value

none
Restrictions

none
See also

fg_3Dsetmatrix()

6 « Fastgraph 6.0 Reference Manual

fg_3Dgetpov()

Prototype

C/C++ voi d fg 3Dget pov (double *x, double *y, double *z, double

*xQut, double *yQut, double *zQut);

C# voi d fg._3Dgetpov (out double x, out double y, out double z,

out doubl e xQut, out double yQut, out double zQut);
Delphi procedure fg 3Dgetpov (var x, y, z, xCQut, yQut, zCut

VB Sub fg_3Dgetpov (x As Double, y As Double, z As Doubl e,
Doubl e, yQut As Double, zQut As Doubl e)

VB.NET Sub fg 3Dgetpov (ByRef x As Double, ByRef y As Doubl e,
As Doubl e, ByRef xQut As Doubl e, ByRef yQut As Doubl e,
zQut As Doubl e)

Description

The fg_3Dgetpov() function returns the viewer's position in 3D world space, along with the (x,y,z)
components of the ViewOut vector. The ViewOut vector is a unit vector in the direction the viewer

is facing.
Parameters
X receives the x coordinate of the viewer's position in 3D world space.
y receives the y coordinate of the viewer's position in 3D world space.
z receives the z coordinate of the viewer's position in 3D world space.
xOut receives the x component of the ViewOut unit vector.
yOut receives the y component of the ViewOut unit vector.
zOut receives the z component of the ViewOut unit vector.
Return value
none
Restrictions
none
See also
fg_3Dlookat(), fg_3Dpov()
Examples

Columns

Fastgraph 6.0 Reference Manual « 7

fg_3Dline()
Prototype
C/C++ void fg 3D ine (double x1, double yl, double z1, double x2,

C#

Delphi
VB

VB.NET

Description

doubl e y2, double z2);

void fg. 3D ine (double x1, double yl, double z1, double x2,
doubl e y2, double z2);

procedure fg 3D ine (x1, yl, zl, x2, y2, z2 : double);

Sub fg_3Dine (ByVal x1 As Double, ByVal yl As Double, Byval z1
As Doubl e, ByVal x2 As Double, ByVal y2 As Double, ByVal z2 As
Doubl e)

Sub fg_3Dine (ByVal x1 As Double, ByVal yl As Double, Byval z1
As Doubl e, ByVal x2 As Double, ByVal y2 As Double, ByVal z2 As
Doubl e)

The fg_3Dline() function draws a line defined in 3D world space, with optional z-buffering and 3D

clipping.
Parameters

x1, y1, and z1 are the 3D world space coordinates for one of the line's end points.

X2, y2, and z2 are the 3D world space coordinates for the line's other end point.

Return value

none

Restrictions

none

See also

fg_3Drenderstate()

Examples

Geometry

8 « Fastgraph 6.0 Reference Manual

fg_3Dlookat()

Prototype

C/C++ int fg 3D ookat (double xFrom double yFrom double zFrom
doubl e xTo, double yTo, double zTo);

C# int fg. 3D ookat (double xFrom double yFrom double zFrom
doubl e xTo, double yTo, double zTo);

Delphi function fg 3D ookat (xFrom yFrom zFrom xTo, yTo, zTo :
doubl e) : integer;

VB Function fg_3D ookat (ByVal xFrom As Doubl e, ByVal yFrom As
Doubl e, ByVal zFrom As Doubl e, ByVal xTo As Doubl e, ByVal yTo
As Doubl e, ByVal zTo As Double) As Long

VB.NET Function fg 3D ookat (ByVal xFrom As Doubl e, ByVal yFrom As
Doubl e, ByVal zFrom As Doubl e, ByVal xTo As Doubl e, ByVal yTo
As Doubl e, ByVal zTo As Doubl e) As Integer

Description

The fg_3Dlookat() function defines the viewer's position and orientation in 3D world space. The
orientation is defined by specifying the 3D world space point at which the viewer is looking.

Parameters
xFrom is the x coordinate of the viewer's position in 3D world space.
yFrom is the y coordinate of the viewer's position in 3D world space.
zFrom is the z coordinate of the viewer's position in 3D world space.
XTo is the x coordinate of the point the viewer is looking at in 3D world space.
yTo is the y coordinate of the point the viewer is looking at in 3D world space.
ZTo is the z coordinate of the point the viewer is looking at in 3D world space.
Return value

If successful, fg_3Dlookat() returns zero. It returns -1 if the two sets of points are too close
together.

Restrictions
none
See also

fg_3Daxisangle(), fg_3Dmove(), fg_3Dmoveforward(), fg_3Dmoveright(), fg_3Dmoveup(),
fg_3Dpov(), fg_3Droll(), fg_3Drotate(), fg_3Drotateright(), fg_3Drotateup()

Examples

Columns, Tunnel

Fastgraph 6.0 Reference Manual « 9

fg_3Dmove()

Prototype
C/C++ voi d fg 3Dnove (double x, double y, double z);
C# void fg. 3Dmove (double x, double y, double z);
Delphi procedure fg 3Dnove (X, y, z : double);
VB Sub fg_3Dnmove (ByVal x As Double, ByVal y As Double, ByVal z As
Doubl e)
VB.NET Sub fg 3Dnove (ByVal x As Double, ByVal y As Double, ByVal z As
Doubl e)
Description

The fg_3Dmove() function moves the viewer to the specified 3D world space position without
changing the direction the viewer is looking.

Parameters
x is the x coordinate of the viewer's position in 3D world space.
y is the y coordinate of the viewer's position in 3D world space.
z is the z coordinate of the viewer's position in 3D world space.
Return value
none
Restrictions
none
See also

fg_3Dlookat(), fg_3Dmoveforward(), fg_3Dmoveobject(), fg_3Dmoveright(), fg_3Dmoveup(),
fg_3Dpov()

Examples

Geometry

10 « Fastgraph 6.0 Reference Manual

fg_3Dmoveforward()

Prototype
C/C++ voi d fg 3Dnoveforward (doubl e Anount);
C# voi d fg. 3Dmoveforward (doubl e Anount);
Delphi procedure fg 3Dnoveforward (Amount : double);
VB Sub fg_3Dmoveforward (ByVal Anount As Doubl e)

VB.NET Sub fg 3Dnoveforward (ByVal Anount As Doubl e)
Description

The fg_3Dmoveforward() function moves the viewer's position forward or backward by the
specified number of 3D world space units.

Parameters

Amount is the number of 3D world space units to move. Movement is forward if Amount is
greater than zero; movement is backward if Amount is less than zero.

Return value
none

Restrictions
none

See also

fg_3Dlookat(), fg_3Dmove(), fg_3Dmoveforwardobject(), fg_3Dmoveright(), fg_3Dmoveup(),
fg_3Dpov()

Examples

Columns, Tunnel

Fastgraph 6.0 Reference Manual « 11

fg_3Dmoveforwardobject()

Prototype
C/C++ voi d fg_3Dnovef or war dobj ect (doubl e Anount);
C# voi d fg. 3Dnovef orwar dobj ect (doubl e Amount);

Delphi procedure fg 3Dnovef orwardobj ect (Anount : double);

VB Sub fg_3Dmovef orwar dobj ect (ByVal Amount As Doubl e)

VB.NET Sub fg_3Dnovef orwar dobj ect (ByVal Anmount As Doubl e)
Description

The fg_3Dmoveforwardobject() function moves an object forward or backward by the specified
number of 3D world space units.

Parameters

Amount is the number of 3D world space units to move the object. Movement is forward if
Amount is greater than zero; movement is backward if Amount is less than zero.

Return value
none

Restrictions
none

See also

fg_3Dmoveforward(), fg_3Dmoveobject(), fg_3Dmoverightobject(), fg_3Dmoveupobject()

12 « Fastgraph 6.0 Reference Manual

fg_3Dmoveobject()

Prototype
C/C++ voi d fg_3Dnoveobj ect (double x, double y, double z);
C# voi d fg._ 3Dnmoveobject (double x, double y, double z);

Delphi procedure fg 3Dnobveobject (x, y, z : double);

VB Sub fg_3Dnmoveobject (ByVal x As Double, ByVal y As Doubl e,
ByVal z As Doubl e)

VB.NET Sub fg 3Dnoveobject (ByVal x As Double, ByVal y As Doubl e,
ByVal z As Doubl e)

Description
The fg_3Dmoveobject() function moves an object to the specified 3D world space position.
Parameters
x is the x coordinate of the object's position in 3D world space.
y is the y coordinate of the object's position in 3D world space.
z is the z coordinate of the object's position in 3D world space.
Return value
none
Restrictions
none
See also

fg_3Dmove(), fg_3Dmoveforwardobject(), fg_3Dmoverightobject(), fg_3Dmoveupobjecty(),
fg_3Dsetobject()

Examples

Columns, Geometry

Fastgraph 6.0 Reference Manual ¢ 13

fg_3Dmoveright()

Prototype
C/C++ voi d fg _3Dmoveright (doubl e Anount);
C# voi d fg. 3Dnoveright (double Amount);
Delphi procedure fg 3Dnoveright (Anount : double);
VB Sub fg_3Dmoveright (ByVal Amount As Doubl e)

VB.NET Sub fg 3Dnoveright (ByVal Amount As Doubl e)
Description

The fg_3Dmoveright() function moves the viewer's position left or right by the specified number
of 3D world space units.

Parameters

Amount is the number of 3D world space units to move. Movement is to the right if Amount is
greater than zero; movement is to the left if Amount is less than zero.

Return value
none

Restrictions
none

See also

fg_3Dlookat(), fg_3Dmove(), fg_3Dmoveforward(), fg_3Dmoverightobject(), fg_3Dmoveup(),
fg_3Dpov()

Examples

Columns

14 - Fastgraph 6.0 Reference Manual

fg_3Dmoverightobject()

Prototype
C/C++ voi d fg 3Dnoveri ght obj ect (doubl e Anount);
C# voi d fg. 3Dmoveri ght obj ect (doubl e Anount);
Delphi procedure fg_3Dnoveri ght obj ect (Amount : double);
VB Sub fg_3Dnmoveri ghtobj ect (ByVal Anount As Doubl e)

VB.NET Sub fg 3Dnoveri ght obj ect (ByVal Anmount As Doubl e)
Description

The fg_3Dmoverightobject() function moves an object left or right by the specified number of
3D world space units.

Parameters

Amount is the number of 3D world space units to move the object. Movement is to the right if
Amount is greater than zero; movement is to the left if Amount is less than zero.

Return value
none

Restrictions
none

See also

fg_3Dmoveforwardobject(), fg_3Dmoveobject(), f{g_3Dmoveright(), fg_3Dmoveupobject()

Fastgraph 6.0 Reference Manual ¢ 15

fg_3Dmoveup()

Prototype
C/C++ voi d fg_3Dmoveup (doubl e Amount);
C# voi d fg. 3Dmoveup (doubl e Anount);
Delphi procedure fg 3Dnoveup (Anount : double);
VB Sub fg_3Dmoveup (ByVal Anpunt As Doubl e)

VB.NET Sub fg 3Dnoveup (ByVal Anmount As Doubl e)
Description

The fg_3Dmoveup() function moves the viewer's position up or down by the specified number of
3D world space units.

Parameters

Amount is the number of 3D world space units to move. Movement is upward if Amount is greater
than zero; movement is downward if Amount is less than zero.

Return value
none

Restrictions
none

See also

fg_3Dlookat(), fg_3Dmove(), fg_3Dmoveforward(), fg_3Dmoveright(), fg_3Dmoveupobject(),
fg_3Dpov()

Examples

Columns

16 « Fastgraph 6.0 Reference Manual

fg_3Dmoveupobject()

Prototype
C/C++ voi d fg_3Dnoveupobj ect (doubl e Anount);
C# voi d fg. 3Dnoveupobj ect (doubl e Anount);

Delphi procedure fg 3Dnoveupobject (Anmount : double);

VB Sub fg_3Dmoveupobj ect (ByVal Anpbunt As Doubl e)

VB.NET Sub fg 3Dnoveupobject (ByVal Anpbunt As Doubl e)
Description

The fg_3Dmoveupobject() function moves an object up or down by the specified number of 3D
world space units.

Parameters

Amount is the number of 3D world space units to move the object. Movement is upward if
Amount is greater than zero; movement is downward if Amount is less than zero.

Return value
none

Restrictions
none

See also

fg_3Dmoveforwardobject(), fg_3Dmoveobject(), f{g_3Dmoverightobject(), fg_3Dmoveup()

Fastgraph 6.0 Reference Manual « 17

fg_3Dpolygon()

Prototype
C/C++ voi d fg_3Dpol ygon (double *xyzArray, int n);
C# voi d fg. _3Dpol ygon (ref double xyzArray, int n);
Delphi procedure fg 3Dpol ygon (var xyzArray : double; n : integer);
VB Sub fg_3Dpol ygon (xyzArray() As Double, ByVal n As Long)
VB.NET Sub fg 3Dpol ygon (ByRef xyzArray As Double, ByVal n As |nteger)
Description

The fg_3Dpolygon() function draws a filled or unfilled convex polygon defined in 3D world space,
with optional z-buffering and 3D clipping. Backface removal is performed unless drawing a z-
buffered polygon.

Parameters

xyzArray is the array containing the 3D world space (x,y,z) coordinates for each polygon vertex.
The first three xyzArray elements represent the (x,y,z) values at the polygon's first vertex, the
next three xyzArray elements are for the second vertex, and so forth.

n is the number of vertices in xyzArray.
Return value

none
Restrictions

If you attempt to fill a non-convex polygon with fg_3Dpolygon(), only a part of it will be filled.
See also

fg_3Dpolygonobject(), fg_3Drenderstate(), fg_3Dshade(), fg_3Dtexturemap(), fg_polyoff()
Examples

Geometry

18 « Fastgraph 6.0 Reference Manual

fg_3Dpolygonobject()

Prototype

C/C++ voi d fg_3Dpol ygonobj ect (double *xyzArray, int n);

C# voi d fg. _3Dpol ygonobj ect (ref double xyzArray, int n);

Delphi procedure fg 3Dpol ygonobj ect (var xyzArray : double; n :
i nteger);

VB Sub fg_3Dpol ygonobj ect (xyzArray() As Double, ByVal n As Long)

VB.NET ISutb fg_)3DpoI ygonobj ect (ByRef xyzArray As Double, ByVal n As
nt eger

Description

The fg_3Dpolygonobject() function draws a filled or unfilled convex polygon defined in 3D object
space, with optional z-buffering and 3D clipping. Backface removal is performed unless drawing a
z-buffered polygon. The polygon is drawn in 3D world space at the position and orientation
specified in the most recent call to fg_3Dmoveobject() or fg_3Dsetobject().

Parameters

xyzArray is the array containing the 3D object space (x,y,z) coordinates for each polygon vertex.
The first three xyzArray elements represent the (x,y,z) values at the polygon's first vertex, the
next three xyzArray elements are for the second vertex, and so forth.

n is the number of vertices in xyzArray.
Return value

none
Restrictions

If you attempt to fill a non-convex polygon with fg_3Dpolygonobject(), only a part of it will be
filled.

See also

fg_3Dmoveobject(), fg_3Dpolygon(), fg_3Drenderstate(), fg_3Drotateobject(), fg_3Dsetobject(),
fg_3Dshadeobject(), fg_3Dtexturemapobject(), fg_polyoff()

Examples

Columns, Cube, Geometry

Fastgraph 6.0 Reference Manual « 19

fg_3Dpov()

Prototype

C/C++ voi d fg 3Dpov (double x, double y, double z, int xAngle, int
yAngl e, int zAngle);

C# voi d fg. 3Dpov (double x, double y, double z, int xAngle, int
yAngl e, int zAngle);

Delphi procedure fg 3Dpov (X, y, z : double; xAngle, yAngle, zAngle :
i nteger);

VB Sub fg_3Dpov (ByVal x As Double, ByVal y As Double, ByVal z As
Doubl e, ByVal xAngle As Long, ByVal yAngle As Long, ByVal
zAngl e As Long)

VB.NET Sub fg 3Dpov (ByVal x As Double, ByVal y As Double, ByVal z As
Doubl e, ByVal xAngle As Integer, ByVal yAngle As |Integer, ByVal
zAngl e As I nteger)

Description

The fg_3Dpov() function defines the viewer's position and orientation in 3D world space. The
orientation is defined through rotation angles about the world space coordinate axes.

Parameters
x is the x coordinate of the viewer's position in 3D world space.
y is the y coordinate of the viewer's position in 3D world space.
z is the z coordinate of the viewer's position in 3D world space.
xAngle is the viewer's counterclockwise orientation about the world space x axis.
yAngle is the viewer's counterclockwise orientation about the world space y axis.
zAngle is the viewer's counterclockwise orientation about the world space z axis.
Return value
none
Restrictions
none
See also

fg_3Daxisangle(), fg_3Dlookat(), fg_3Dmove(), fg_3Dmoveforward(), fg_3Dmoveright(),
fg_3Dmoveup(), fg_3Droll(), fg_3Drotate(), fg_3Drotateright(), f{g_3Drotateup()

20 « Fastgraph 6.0 Reference Manual

fg_3Dproject()

Prototype
C/C++ voi d fg 3Dproject (double *Source, int *Dest, int n);
C# void fg. 3Dproject (ref double Source, ref int Dest, int n);
Delphi procedure fg 3Dproject (var Source : double; var Dest
integer; n : integer);
VB Sub fg_3Dproject (Source() As Double, Dest() As Long, ByVal n
As Long)

VB.NET Sub fg 3Dproject (ByRef Source As Doubl e, ByRef Dest As
Integer, ByVal n As Integer)

Description

The fg_3Dproject() function projects a series of transformed 3D (x,y,z) points to 2D (x,y) screen
space points. This function is called internally by Fastgraph's 3D functions and is not usually
called directly by applications.

Parameters

Source is the name of the array containing the transformed 3D (x,y,z) coordinates to project to
screen space. The first three elements of the Source array contain the coordinates for the first
point, the next three elements are for the next point, and so on.

Dest is the name of the array that receives the projected 2D (x,y) screen space coordinates. The
first two elements of the Dest array will contain the coordinates for the first point, the next two
elements will contain the next point, and so on. The size of Dest must be large enough to hold
2*n integer values.

n is the number of 3D points to project.
Return value

none
Restrictions

Before using this function, you must set up a 3D viewport with f{g_3Dviewport().
See also

fg_3Dtransform(), fg_3Dtransformobject()

Fastgraph 6.0 Reference Manual « 21

fg_3Drenderstate()

Prototype
C/C++ void fg 3Drenderstate (int Flags);
C# void fg. 3Drenderstate (int Flags);
Delphi procedure fg 3Drenderstate (Flags : integer);
VB Sub fg_3Drenderstate (ByVal Flags As Long)
VB.NET Sub fg 3Drenderstate (ByVal Flags As Integer)
Description

The fg_3Drenderstate() function defines the render state for the 3D line drawing and 3D polygon
drawing functions.

Parameters

Flags is one or more of the following flags:

Flag Applies to

FG_LINEAR_TM fg_3Dtexturemap() and fg_3Dtexturemapobject()
FG_PERSPECTIVE_TM fg_3Dtexturemap() and fg_3Dtexturemapobject()
FG_WIREFRAME fg_3Dpolygon() and fg_3Dpolygonobject()
FG_ZBUFFER all

FG_ZCLIP all

Return value
none

Restrictions
none

See also

fg_3Dline(), fg_3Dpolygon(), fg_3Dpolygonobject(), fg_3Dshade(), fg_3Dshadeobject(),
fg_3Dtexturemap(), fg_3Dtexturemapobject()

Examples

Columns, Cube, Geometry, TMcube, TMcubeX, Tunnel

22 « Fastgraph 6.0 Reference Manual

fg_3Droll()
Prototype
C/C++ void fg 3Droll (int Angle);
C# void fg. 3Droll (int Angle);
Delphi procedure fg 3Droll (Angle : integer);
VB Sub fg_3Droll (ByVal Angle As Long)

VB.NET Sub fg 3Droll (ByVal Angle As |nteger)
Description

The fg_3Droll() function rotates the viewer's forward orientation clockwise or counterclockwise
by the specified angle.

Parameters

Angle is the rotation angle, expressed in tenths of degrees. If Angle is positive, the viewer rotates
clockwise. If Angle is negative, the viewer rotates counterclockwise.

Return value
none

Restrictions
none

See also

fg_3Daxisangle(), fg_3Dlookat(), fg_3Dpov(), fg_3Drollobject(), fg_3Drotate(), f{g_3Drotateright(),
fg_3Drotateup()

Fastgraph 6.0 Reference Manual « 23

fg_3Drollobject()

Prototype
C/C++ void fg 3Drollobject (int Angle);
C# void fg. 3Droll object (int Angle);

Delphi procedure fg 3Droll object (Angle : integer);

VB Sub fg_3Droll object (ByVal Angle As Long)

VB.NET Sub fg 3Drollobject (ByVal Angle As Integer)
Description

The fg_3Drollobject() function rotates an object clockwise or counterclockwise by the specified
angle.

Parameters

Angle is the rotation angle, expressed in tenths of degrees. If Angle is positive, the object rotates
clockwise. If Angle is negative, the object rotates counterclockwise.

Return value
none

Restrictions
none

See also

fg_3Daxisangleobject(), fg_3Droll(), fg_3Drotateobject(), f{g_3Drotaterightobject(),
fg_3Drotateupobject()

24 « Fastgraph 6.0 Reference Manual

fg_3Drotate()

Prototype
CIC++
C#
Delphi
VB

VB.NET

Description

int fg 3Drotate (double xQut, double yQut, double zQut);
int fg. 3Drotate (double xQut, double yQut, double zQut);
function fg 3Drotate (xQut, yQut, zQut : double) : integer;

Function fg_3Drotate (ByVal xQut As Double, ByVal yQut As
Doubl e, ByVal zQut As Double) As Long

Function fg _3Drotate (ByVal xQut As Double, ByvVal yQut As
Doubl e, ByVal zQut As Double) As Integer

The fg_3Drotate() function rotates the viewer's orientation by specifying the (x,y,z) components
of a vector in the direction the viewer is facing.

Parameters

xOut is the x component of the vector.

yOut is the y component of the vector.

zOut is the z component of the vector.

Return value

If successful, fg_3Drotate() returns zero. It returns -1 if the vector's magnitude is too close to

Zero.

Restrictions

none

See also

fg_3Daxisangle(), fg_3Dlookat(), fg_3Dpov(), fg_3Droll(), fg_3Drotateobject(), fg_3Drotateright(),
fg_3Drotateup()

Fastgraph 6.0 Reference Manual ¢ 25

fg_3Drotateobject()

Prototype
CIC++
C#
Delphi

VB

VB.NET

Description

int fg 3Drotateobject (double xQut, double yQut, double zCQut);
int fg. 3Drotateobject (double xQut, double yQut, double zCQut);

function fg 3Drotateobject (xQut, yQut, zQut : double)
i nt eger;

Function fg_3Drotateobject (ByVal xQut As Double, ByVal yQut As
Doubl e, ByVal zQut As Double) As Long

Function fg_3Drotateobject (ByVal xQut As Double, ByVal yQut As
Doubl e, ByVal zQut As Double) As |nteger

The fg_3Drotateobject() function rotates an object by specifying the (x,y,z) components of a
vector in the direction of the object rotation.

Parameters

xOut is the x component of the vector.

yOut is the y component of the vector.

zOut is the z component of the vector.

Return value

If successful, fg_3Drotateobject() returns zero. It returns -1 if the vector's magnitude is too close

to zero.

Restrictions

none

See also

fg_3Daxisangleobject(), fg_3Drollobject(), fy_3Drotate(), fg_3Drotaterightobject(),
fg_3Drotateupobject(), fg_3Dsetobject()

26 « Fastgraph 6.0 Reference Manual

fg_3Drotateright()

Prototype
C/C++ void fg 3Drotateright (int Angle);
C# void fg. 3Drotateright (int Angle);

Delphi procedure fg 3Drotateright (Angle : integer);

VB Sub fg_3Drotateright (ByVal Angle As Long)

VB.NET Sub fg 3Drotateright (ByVal Angle As Integer)
Description

The fg_3Drotateright() function rotates the viewer's orientation left or right by the specified
angle.

Parameters

Angle is the rotation angle, expressed in tenths of degrees. If Angle is positive, the viewer rotates
to the right. If Angle is negative, the viewer rotates to the left.

Return value
none

Restrictions
none

See also

fg_3Daxisangle(), fg_3Dlookat(), fg_3Dpov(), fg_3Droll(), fg_3Drotate(), fg_3Drotaterightobject(),
fg_3Drotateup()

Examples

Columns, Tunnel

Fastgraph 6.0 Reference Manual ¢ 27

fg_3Drotaterightobject()

Prototype
C/C++ void fg 3Drotaterightobject (int Angle);
C# void fg. 3Drotaterightobject (int Angle);

Delphi procedure fg 3Drotaterightobject (Angle : integer);

VB Sub fg_3Drotaterightobject (ByVal Angle As Long)

VB.NET Sub fg 3Drotaterightobject (ByVal Angle As |nteger)
Description

The fg_3Drotaterightobject() function rotates an object left or right by the specified angle.
Parameters

Angle is the rotation angle, expressed in tenths of degrees. If Angle is positive, the object rotates
to the right. If Angle is negative, the object rotates to the left.

Return value
none

Restrictions
none

See also

fg_3Daxisangleobject(), fg_3Drollobject(), fg_3Drotateobject(), fg_3Drotateright(),
fg_3Drotateupobject()

28 « Fastgraph 6.0 Reference Manual

fg_3Drotateup()

Prototype
C/C++ void fg 3Drotateup (int Angle);
C# void fg. 3Drotateup (int Angle);

Delphi procedure fg 3Drotateup (Angle : integer);

VB Sub fg_3Drotateup (ByVal Angle As Long)

VB.NET Sub fg 3Drotateup (ByVal Angle As Integer)
Description

The fg_3Drotateup() function rotates the viewer's orientation up or down by the specified angle.
Parameters

Angle is the rotation angle, expressed in tenths of degrees. If Angle is positive, the viewer rotates
upward. If Angle is negative, the viewer rotates downward.

Return value
none

Restrictions
none

See also

fg_3Daxisangle(), fg_3Dlookat(), fg_3Dpov(), fg_3Droll(), fg_3Drotate(), fg_3Drotateright(),
fg_3Drotateupobject()

Examples

Columns

Fastgraph 6.0 Reference Manual « 29

fg_3Drotateupobject()

Prototype

C/C++ voi d fg_3Drotateupobject (int Angle);

C# voi d fg._3Drotateupobject (int Angle);

Delphi procedure fg 3Drotat eupobject (Angle : integer);

VB Sub fg_3Drotateupobject (ByVal Angle As Long)

VB.NET Sub fg 3Drotateupobject (ByVal Angle As Integer)
Description

The fg_3Drotateupobject() function rotates an object up or down by the specified angle.
Parameters

Angle is the rotation angle, expressed in tenths of degrees. If Angle is positive, the object rotates
upward. If Angle is negative, the object rotates downward.

Return value
none

Restrictions
none

See also

fg_3Daxisangleobject(), fg_3Drollobject(), fg_3Drotateobject(), fg_3Drotaterightobject(),
fg_3Drotateup()

30 « Fastgraph 6.0 Reference Manual

fg_3Dse

Prototype
CIC++
C#
Delphi

VB
VB.NET

Description

tmatrix()

void fg 3Dsetmatrix (double *Matrix, int Flag, int Update);
void fg. 3Dsetmatrix (ref double Matrix, int Flag, int Update);

procedure fg 3Dsetmatrix (var Matrix : double; Flag, Update :
i nteger);

Sub fg_3Dsetmatrix (Matrix() As Double, ByVal Flag As Long,
ByVal Update As Long)

Sub fg_3Dsetmatrix (ByRef Matrix As Double, ByVal Flag As
I nteger, ByVal Update As Integer)

The fg_3Dsetmatrix() function defines the elements in one of Fastgraph's 3D rotation,
translation, or transformation matrices, and optionally update any matrix dependencies. This
function is provided for the benefit of experienced 3D programmers who need access to
Fastgraph's internal 3D matrices.

Parameters

Matrix is the name of the array containing the matrix values. The first four elements of Matrix are
assumed to be the four values for the first row of the specified matrix, the next four elements are

the values

for the second row, and the last four elements are the values for the third row.

Flag specifies which matrix to define:

FG_OBJECT_ROTATION object to world rotation
FG_OBJECT_TRANSLATION object to world translation
FG_OBJECT_TRANSFORM object to world transformation
FG_WORLD_ROTATION world to view rotation
FG_WORLD_TRANSLATION world to view translation
FG_WORLD_TRANSFORM world to view transformation
FG_COMBINED_TRANSFORM object to view transformation

If Flag is not one of the above values, fg_3Dsetmatrix() does nothing.

Update specifies if any dependent matrices will be updated. If Update is zero, only the matrix
specified by Flag will be updated. If Update is any other value, any matrices that are dependent
on the specified matrix will be updated too.

Return value
none

Restrictions
none

See also

fg_3Dgetmatrix()

Fastgraph 6.0 Reference Manual ¢ 31

fg_3Dsetobject()

Prototype

C/C++ voi d fg 3Dsetobject (double x, double y, double z,
int yAngle, int zAngle);

C# voi d fg. 3Dsetobject (double x, double y, double z,
int yAngle, int zAngle);

i nt xAngl e,

i nt xAngl e,

Delphi procedure fg 3Dsetobject (x, y, z : double; xAngle, yAngle,

zAngl e : integer);

VB Sub fg_3Dsetobject (ByVal x As Double, ByVal y As Doubl e,
z As Doubl e, ByVal xAngle As Long, ByVal yAngle As Long,

zAngl e As Long)

VB.NET Sub fg 3Dsetobject (ByVal x As Double, ByVal y As Doubl e,
z As Doubl e, ByVal xAngle As Integer, ByVal yAngle As Integer,

ByVal zAngle As Integer)

Description

The fg_3Dsetobject() function defines an object's position in 3D world space and its rotation

about its own object space axes (center of gravity).

Parameters
X is the x position of the object's center of gravity in 3D world space.
y is the y position of the object's center of gravity in 3D world space.

z is the z position of the object's center of gravity in 3D world space.

xAngle is the counterclockwise rotation about the object's x axis, expressed in tenths of degrees.

yAngle is the counterclockwise rotation about the object's y axis, expressed in tenths of degrees.

zAngle is the counterclockwise rotation about the object's z axis, expressed in tenths of degrees.

Return value
none

Restrictions
none

See also

fg_3Daxisangleobject(), fg_3Dmoveobject(), fg_3Dpolygonobject(), fg_3Drotateobject(),

fg_3Dshadeobiject(), fg_3Dtexturemapobiject()
Examples
Cube, TMcube, TMcubeX

32 « Fastgraph 6.0 Reference Manual

fg_3Dsetzclip()

Prototype
C/C++ void fg 3Dsetzclip (double zNear, double zFar);
C# void fg. 3Dsetzclip (double zNear, double zFar);

Delphi procedure fg 3Dsetzclip (zNear, zFar : double);

VB Sub fg_3Dsetzclip (ByVal zNear As Doubl e, ByVal zFar As Doubl e)

VB.NET Sub fg 3Dsetzclip (ByVal zNear As Doubl e, ByVal zFar As Doubl e)
Description

The fg_3Dsetzclip() function defines the near and far z clipping planes for 3D clipping. If you do
not call fg_3Dsetzclip(), Fastgraph will use its default near and far clipping planes of 1 and 1000
respectively.

Parameters

zNear is the z coordinate of the near clipping plane. It must be greater than zero, or if z-buffering
is used, greater than or equal to 1.

zFar is the z coordinate of the far clipping plane. It must be greater or equal to zNear.
Return value

none
Restrictions

3D clipping is not supported for right-handed 3D coordinate systems.
Examples

TMcube, TMcubeX

Fastgraph 6.0 Reference Manual ¢ 33

fg_3Dshade()

Prototype
C/C++
C#

Delphi

VB

VB.NET

Description

voi d fg _3Dshade (doubl e *xyzArray, char *rgbArray, int n);

void fg. 3Dshade (ref double xyzArray, ref byte rgbArray, int
n);

procedure fg 3Dshade (var xyzArray : double; var rgbArray :
byte; n : integer);

Sub fg_3Dshade (xyzArray() As Double, rgbArray() As Byte, ByVal
n As Long)

Sub fg_3Dshade (ByRef xyzArray As Doubl e, ByRef rgbArray As
Byte, ByVal n As |nteger)

The fg_3Dshade() function draws a Gouraud-shaded convex polygon defined in 3D world space,

with optional z-buffering and 3D clipping. Backface removal is performed unless drawing a z-
buffered polygon.

Parameters

xyzArray is an array containing the 3D world space (x,y,z) coordinates for each polygon vertex.
The first three xyzArray elements represent the (x,y,z) values at the polygon's first vertex, the
next three xyzArray elements are for the second vertex, and so forth.

rgbArray is an array containing the RGB color components for each polygon vertex. The first
three rgbArray elements represent the RGB color values at the polygon's first vertex, the next
three rgbArray elements are for the second vertex, and so forth. Each RGB color component is a
value between 0 and 255.

n is the number of vertices in each of the above arrays.

Return value
none

Restrictions

If you attempt to fill a non-convex polygon with f{g_3Dshade(), only a part of it will be filled.

See also

fg_3Dpolygon(), fg_3Drenderstate(), fg_3Dshadeobject(), fg_3Dtexturemap(), fg_polyoff()

Examples

Tunnel

34 « Fastgraph 6.0 Reference Manual

fg_3Dshadeobject()

Prototype
C/C++

C#

Delphi

VB

VB.NET

Description

voi d fg _3Dshadeobj ect (double *xyzArray, char *rgbArray, int
n);

voi d fg. 3Dshadeobj ect (ref double xyzArray, ref byte rgbArray,
int n);

procedure fg 3Dshadeobj ect (var xyzArray : double; var rgbArray
. byte; n: integer);

Sub fg_3Dshadeobj ect (xyzArray() As Double, rgbArray() As Byte,
ByVal n As Long)

Sub fg_3Dshadeobj ect (ByRef xyzArray As Doubl e, ByRef rgbArray
As Byte, ByVal n As Integer)

The fg_3Dshadeobject() function draws a Gouraud-shaded convex polygon defined in 3D object
space, with optional z-buffering and 3D clipping. Backface removal is performed unless drawing a

z-buffered

polygon. The polygon is drawn in 3D world space at the position and orientation

specified in the most recent call to fg_3Dmoveobject() or fg_3Dsetobject().

Parameters

XyzArray is an array containing the 3D object space (x,y,z) coordinates for each polygon vertex.
The first three xyzArray elements represent the (X,y,z) values at the polygon's first vertex, the
next three xyzArray elements are for the second vertex, and so forth.

rgbArray is an array containing the RGB color components for each polygon vertex. The first
three rgbArray elements represent the RGB color values at the polygon's first vertex, the next
three rgbArray elements are for the second vertex, and so forth. Each RGB color component is a
value between 0 and 255.

n is the number of vertices in each of the above arrays.

Return value
none

Restrictions

If you attempt to fill a non-convex polygon with fg_3Dshadeobject(), only a part of it will be filled.

See also

fg_3Dmoveobject(), fg_3Dpolygonobject(), fg_3Drenderstate(), fg_3Drotateobject(),
fg_3Dsetobject(), fg_3Dshade(), fg_3Dtexturemapobject(), fg_polyoff()

Fastgraph 6.0 Reference Manual ¢ 35

fg_3Dtexturemap()

Prototype

C/C++ void fg 3Dtexturemap (double *xyzArray, void *uvArray, int n);

C# void fg. 3Dtexturemap (ref double xyzArray, ref int uvArray,
int n);
void fg. 3Dtexturemap (ref double xyzArray, ref float uvArray,
int n);

Delphi procedure fg 3Dtexturemap (var xyzArray : double; var uvArray;
n : integer);

VB Sub fg_3Dtexturemap (xyzArray() As Double, uvArray() As Any,

ByVal n As Long)

VB.NET Sub fg 3Dtexturemap (ByRef xyzArray As Double, ByRef uvArray As
Integer, ByVal n As Integer)

Sub fg_3Dtexturemap (ByRef xyzArray As Doubl e, ByRef uvArray As
Single, ByVal n As Integer)

Description

The fg_3Dtexturemap() function draws a linear or perspective texture-mapped polygon defined
in 3D world space, with optional z-buffering and 3D clipping. Backface removal is performed
unless drawing a z-buffered polygon.

Parameters

xyzArray is an array containing the 3D world space (x,y,z) coordinates for each polygon vertex.
The first three xyzArray elements represent the (x,y,z) values at the polygon's first vertex, the
next three xyzArray elements are for the second vertex, and so forth.

uvArray is an array containing the (u,v) texture map coordinates for each polygon vertex. The first
two uvArray elements represent the (u,v) values at the polygon's first vertex, the next two uvArray
elements are for the second vertex, and so forth. The fg_tmunits() function defines if uvArray
contains integer or 32-bit floating point values.

n is the number of vertices in each of the above arrays.
Return value
none
Restrictions
If you attempt to fill a non-convex polygon with fg_3Dtexturemap(), only a part of it will be filled.

See also

fg_3Dpolygon(), fg_3Drenderstate(), fg_3Dshade(), fg_3Dtexturemapobject(), fg_polyoff(),
fg_tmdefine(), fg_tmselect(), fg_tmspan(), fg_tmtransparency(), fg_tmunits()

36 « Fastgraph 6.0 Reference Manual

fg_3Dtexturemapobject()

Prototype
C/C++ voi d fg_ 3Dt ext uremapobj ect (double *xyzArray, void *uvArray,
int n);
C# voi d fg._ 3Dtexturenmapobj ect (ref double xyzArray, ref int

uvArray, int n);
voi d fg. 3Dtexturenmapobject (ref double xyzArray, ref float
uvArray, int n);

Delphi procedure fg 3Dt exturemapobject (var xyzArray : double; var
uvArray; n : integer);

VB Sub fg_3Dt exturenmapobj ect (xyzArray() As Double, uvArray() As
Any, ByVal n As Long)

VB.NET Sub fg 3Dt exturenmapobject (ByRef xyzArray As Doubl e, ByRef
uvArray As Integer, ByVal n As Integer)
Sub fg_3Dtexturenmapobj ect (ByRef xyzArray As Doubl e, ByRef
uvArray As Single, ByVal n As Integer)

Description

The fg_3Dtexturemapobject() function draws a linear or perspective texture-mapped polygon
defined in 3D object space, with optional z-buffering and 3D clipping. Backface removal is
performed unless drawing a z-buffered polygon. The polygon is drawn in 3D world space at the
position and orientation specified in the most recent call to fg_3Dmoveobject() or
fg_3Dsetobject().

Parameters

XyzArray is an array containing the 3D object space (x,y,z) coordinates for each polygon vertex.
The first three xyzArray elements represent the (x,y,z) values at the polygon's first vertex, the
next three xyzArray elements are for the second vertex, and so forth.

uvArray is an array containing the (u,v) texture map coordinates for each polygon vertex. The first
two uvArray elements represent the (u,v) values at the polygon's first vertex, the next two uvArray
elements are for the second vertex, and so forth. The fg_tmunits() function defines if uvArray
contains integer or 32-bit floating point values.

n is the number of vertices in each of the above arrays.
Return value

none
Restrictions

If you attempt to fill a non-convex polygon with fg_3Dtexturemapobject(), only a part of it will be
filled.

See also

fg_3Dmoveobject(), fg_3Dpolygonobject(), fg_3Drenderstate(), f{g_3Drotateobject(),
fg_3Dsetobject(), f{g_3Dshadeobject(), fg_3Dtexturemap(), fg_polyoff(), fg_tmdefine(),
fg_tmselect(), fg_tmspan(), fg_tmtransparency(), fg_tmunits()

Examples
TMcube, TMcubeX

Fastgraph 6.0 Reference Manual ¢ 37

fg_3Dtransform()

Prototype

C/C++ voi d fg _3Dtransform (doubl e *Source, double *Dest, int n);

C# void fg. _3Dtransform (ref double Source, ref double Dest, int
n);

Delphi procedure fg 3Dtransform (var Source, Dest : double; n :
i nteger);

VB Sub fg_3Dtransform (Source() As Double, Dest() As Double, ByVal
n As Long)

VB.NET Sub fg 3Dtransform (ByRef Source As Doubl e, ByRef Dest As
Doubl e, ByVal n As Integer)

Description

The fg_3Dtransform() function transforms a series of 3D (x,y,z) coordinates from world space to
view space. This function is called internally by Fastgraph's 3D functions and is not usually called
directly by applications.

Parameters

Source is the name of the array containing the 3D world space (x,y,z) coordinates to transform.
The first three elements of the Source array contain the coordinates for the first point, the next
three elements are for the next point, and so on.

Dest is the name of the array that receives the transformed 3D view space (X,y,z) coordinates.
The first three elements of the Dest array will contain the coordinates for the first point, the next
three elements will contain the next point, and so on. The size of Dest must be at least as large
as the Source array.

n is the number of 3D points to transform.
Return value

none
Restrictions

none
See also

fg_3Dproject(), fg_3Dtransformobject()

38 « Fastgraph 6.0 Reference Manual

fg_3Dtransformobject()

Prototype

C/C++ voi d fg_3Dtransfornobject (double *Source, double *Dest, int
n);

C# voi d fg. 3Dtransfornobject (ref double Source, ref double Dest,
int n);

Delphi procedure fg 3Dtransfornobject (var Source, Dest : double; n :
i nteger);

VB Sub fg_3Dtransfornobject (Source() As Double, Dest() As Doubl e,

ByVal n As Long)

VB.NET Sub fg 3Dtransfornobject (ByRef Source As Doubl e, ByRef Dest As
Doubl e, ByVal n As Integer)

Description

The fg_3Dtransformobject() function transforms a series of 3D (x,y,z) coordinates from object
space to view space. This function is called internally by Fastgraph's 3D functions and is not
usually called directly by applications.

Parameters

Source is the name of the array containing the 3D object space (x,y,z) coordinates to transform.
The first three elements of the Source array contain the coordinates for the first point, the next
three elements are for the next point, and so on.

Dest is the name of the array that receives the transformed 3D view space (X,y,z) coordinates.
The first three elements of the Dest array will contain the coordinates for the first point, the next
three elements will contain the next point, and so on. The size of Dest must be at least as large
as the Source array.

n is the number of 3D points to transform.
Return value

none
Restrictions

none
See also

fg_3Dmoveobject(), fg_3Dproject(), fg_3Drotateobject(), fg_3Dsetobject(), fg_3Dtransform()

Fastgraph 6.0 Reference Manual ¢ 39

fg_3Dupvector()

Prototype
C/C++ voi d fg 3Dupvector (double x, double y, double z);

C# voi d fg. 3Dupvector (double x, double y, double z);
Delphi procedure fg 3Dupvector (X, y, z : double);
VB Sub fg_3Dupvector (ByVal x As Double, ByVal y As Doubl e, ByVal
z As Doubl e)
VB.NET Sub fg 3Dupvector (ByVal x As Double, ByVal y As Double, ByVal
z As Doubl e)
Description

The fg_3Dupvector() function defines the 3D geometry system's up vector. The default up
vector is (0.0,1.0,0.0). This function is provided for completeness; it is seldom necessary to
modify the up vector.

Parameters
x is the up vector's x component.
y is the up vector's y component.
z is the up vector's z component.
Return value
none
Restrictions
At least one of the up vector's (x,y,z) components must be non-zero.
See also
fg_3Dlookat()

40 « Fastgraph 6.0 Reference Manual

fg_3Dviewport()

Prototype

C/C++ void fg 3Dviewport (int xMn, int xMax, int yMn, int yMax,
doubl e Rati 0);

C# void fg. 3Dviewport (int xMn, int xMax, int yMn, int yMax,
doubl e Rati 0);

Delphi procedure fg 3Dviewport (xMn, xMax, yMn, yMax : integer;
Ratio : double);

VB Sub fg_3Dviewport (ByVal xMn As Long, ByVal xMax As Long,
ByVal yMn As Long, ByVal yMax As Long, ByVal Ratio As Doubl e)

VB.NET Sub fg 3Dviewport (ByVal xMn As Integer, ByVal xMax As
Integer, ByVal yMn As Integer, ByVal yMax As |nteger, ByVal
Rati o As Doubl e)

Description

The fg_3Dviewport() function defines the 3D viewport in screen space and the corresponding
projection ratio. You must set up a 3D viewport before using any 3D drawing functions or
fg_3Dproject().

Parameters
XMin is the x coordinate of the viewport's left edge.

xMax is the x coordinate of the viewport's right edge. It must be greater than or equal to the value
of xMin.

yMin is the y coordinate of the viewport's top edge.

yMax is the y coordinate of the viewport's bottom edge. It must be greater than or equal to the
value of yMin.

Ratio is the projection ratio. It must be greater than zero for a left-handed 3D coordinate system,
and less than zero for a right-handed system.

Return value

none
Restrictions

3D clipping cannot be used with a right-handed coordinate system.
Examples

Columns, Cube, Geometry, TMcube, TMcubeX, Tunnel

Fastgraph 6.0 Reference Manual « 41

fg_3Dzclip()
Prototype
C/C++ int fg 3Dzclip (double *xyzSource, double *xyzDest, int n);
C# int fg. 3Dzclip (ref double xyzSource, ref double xyzDest, int
n);
Delphi function fg 3Dzclip (var xyzSource, xyzDest : double; n :
i nteger) : integer;
VB Function fg_3Dzclip (xyzSource() As Double, xyzDest() As

Doubl e, ByVal n As Long) As Long

VB.NET Function fg 3Dzclip (ByRef xyzSource As Doubl e, ByRef xyzDest
As Double, ByVal n As Integer) As |nteger

Description

The fg_3Dzclip() function clips a series of 3D (x,y,z) polygon vertices against the z plane clipping
values defined by fg_3Dsetzclip(). Near clipping uses true clipping, but far clipping occurs only if
the entire polygon lies beyond the far clipping plane. This function is called internally by
Fastgraph's 3D functions and is not usually called directly by applications.

Parameters

xyzSource is the name of the array containing the 3D (x,y,z) vertices to clip. The first three
elements of the xyzSource array contain the coordinates for the first vertex, the next three
elements are for the next vertex, and so on.

xyzDest is the name of the array that receives the clipped 3D (x,y,z) vertices. The first three
elements of the xyzDest array will contain the coordinates for the first vertex, the next three
elements will contain the next vertex, and so on. The size of xyzDest must be at least as large as
the xyzSource array.

n is the number of vertices in the xyzSource array.
Return value

The resulting number of vertices in the xyzDest array.
Restrictions

3D clipping is not supported for right-handed 3D coordinate systems.
See also

fg_3Dtransform(), fg_3Dtransformobject(), fg_3Dzcliprgb(), fg_3Dzcliptm()

42 « Fastgraph 6.0 Reference Manual

fg_3Dzcliprgb()

Prototype

C/C++ int fg 3Dzcliprgb (double *xyzSource, double *xyzDest, char
*rgbSource, char *rgbDest, int n);

C# int fg. 3Dzcliprgb (ref double xyzSource, ref double xyzDest,
ref byte rgbSource, ref byte rgbDest, int n);

Delphi function fg 3Dzcliprgb (var xyzSource, xyzDest : double; var
rgbSource, rgbDest : byte; n : integer) : integer;

VB Function fg_3Dzcliprgb (xyzSource() As Double, xyzDest() As
Doubl e, rgbSource() As Byte, rgbDest() As Byte, ByVal n As
Long) As Long

VB.NET Function fg 3Dzcliprgb (ByRef xyzSource As Doubl e, ByRef
xyzDest As Doubl e, ByRef rgbSource As Byte, ByRef rgbDest As
Byte, ByVal n As Integer) As |nteger

Description

The fg_3Dzcliprgb() function clips a series of 3D (X,y,z) polygon vertices and corresponding
RGB shading values against the z plane clipping values defined by fg_3Dsetzclip(). Near
clipping is true clipping, but far clipping occurs only if the entire polygon lies beyond the far
clipping plane. This function is called internally by Fastgraph's 3D functions and is not usually
called directly by applications.

Parameters

xyzSource is the name of the array containing the 3D (x,y,z) vertices to clip. The first three
elements of the array contain the coordinates for the first vertex, the next three elements are for
the next vertex, and so on.

xyzDest is the name of the array that receives the clipped 3D (x,y,z) vertices. The first three
elements of the array will contain the coordinates for the first vertex, the next three elements will
contain the next vertex, and so on. The xyzDest array must be at least as large as the xyzSource
array.

rgbSource is the name of the array containing the RGB shading values for each (x,y,z) coordinate
triple in xyzSource. The first three rgbSource elements represent the shading values at the first
vertex in xyzSource, the next three rgbSource elements are for the second vertex, and so forth.

rgbDest is the name of the array that receives the clipped RGB shading values. The first three
elements of the rgbDest array will contain the shading values for the first vertex, the next three
elements will be for the second vertex, and so on. The rgbDest array must be at least as large as
the rgbSource array.

n is the number of vertices in the xyzSource and rgbSource arrays.
Return value

The resulting number of vertices in the xyzDest and rgbDest arrays.
Restrictions

RGB clipping is not supported for right-handed 3D coordinate systems.
See also

fg_3Dtransform(), fg_3Dtransformobject(), fg_3Dzclip(), fg_3Dzcliptm()

Fastgraph 6.0 Reference Manual « 43

fg_3Dzcliptm()

Prototype

C/C++ int fg 3Dzcliptm (double *xyzSource, double *xyzDest, void
*uvSource, void *uvDest, int n);

C# int fg. 3Dzcliptm (ref double xyzSource, ref double xyzDest,
ref int uvSource, ref int uvDest, int n);
int fg. 3Dzcliptm (ref double xyzSource, ref double xyzDest,
ref float uvSource, ref float uvDest, int n);

Delphi function fg 3Dzcliptm (var xyzSource, xyzDest : double; var

uvSource, uvDest; n : integer) : integer;

VB Function fg_3Dzcliptm (xyzSource() As Double, xyzDest() As
Doubl e, uvSource() As Any, uvDest() As Any, ByVal n As Long) As
Long

VB.NET Function fg 3Dzcliptm (ByRef xyzSource As Doubl e, ByRef xyzDest
As Doubl e, ByRef uvSource As |nteger, ByRef uvDest As Integer,
ByVal n As Integer) As Integer
Function fg_3Dzcliptm (ByRef xyzSource As Doubl e, ByRef xyzDest
As Doubl e, ByRef uvSource As Single, ByRef uvDest As Single,
ByVal n As Integer) As Integer

Description

The fg_3Dzcliptm() function clips a series of 3D (X,y,z) polygon vertices and corresponding 2D
(u,v) texture map coordinates against the z plane clipping values defined by fg_3Dsetzclip().
Near clipping uses true clipping, but far clipping occurs only if the entire polygon lies beyond the
far clipping plane. This function is called internally by Fastgraph's 3D functions and is not usually
called directly by applications.

Parameters

xyzSource is the name of the array containing the 3D (x,y,z) vertices to clip. The first three
elements of the array contain the coordinates for the first vertex, the next three elements are for
the next vertex, and so on.

xyzDest is the name of the array that receives the clipped 3D (x,y,z) vertices. The first three
elements of the array will contain the coordinates for the first vertex, the next three elements will
contain the next vertex, and so on. The xyzDest array must be at least as large as the xyzSource
array.

uvSource is the name of the array containing the (u,v) texture map coordinates for each (x,y,z)
coordinate triple in xyzSource. The first two uvSource elements represent the (x,y,z) values at the
first vertex in xyzSource, the next two uvSource elements are for the second vertex, and so forth.
The fg_tmunits() function defines if uvSource contains integer or 32-bit floating point values.

uvDest is the name of the array that receives the clipped 2D (u,v) coordinates. The first two
elements of the uvDest array will contain the coordinates for the first vertex, the next two
elements will be for the next vertex, and so on. The fg_tmunits() function defines if uvDest will
receive integer or 32-bit floating point values. The uvDest array must be at least as large as the
uvSource array.

n is the number of vertices in the xyzSource and uvSource arrays.
Return value

The resulting number of vertices in the xyzDest and uvDest arrays.

44 « Fastgraph 6.0 Reference Manual

fg_3Dzcliptm() (continued)
Restrictions

Texture clipping is not supported for right-handed 3D coordinate systems.
See also

fg_3Dtransform(), fg_3Dtransformobject(), fg_3Dzclip(), fg_3Dzcliprgb(), fg_tmunits()

Fastgraph 6.0 Reference Manual ¢ 45

fg_arc()

Prototype
C/C++ void fg arc (int Radius, int StartAngle, int EndAngle);
C# void fg.arc (int Radius, int StartAngle, int EndAngle);

Delphi procedure fg arc (Radius, StartAngle, EndAngle : integer);

VB Sub fg_arc (ByVal Radius As Long, ByVal StartAngle As Long,
ByVal EndAngl e As Long)

VB.NET Sub fg arc (ByVal Radius As Integer, ByVal StartAngle As
I nteger, ByVal EndAngl e As Integer)

Description

The fg_arc() function draws a circular arc in screen space, centered at the current graphics
position, with clipping. The arc is drawn counterclockwise from the starting angle to the ending
angle.

Parameters

Radius is the arc's radius in horizontal screen space units. Its value must be greater than zero.
The radius defines the arc's horizontal distance (at zero degrees) from the current graphics
position.

StartAngle is the starting point of the arc, expressed in tenths of degrees counterclockwise from
the horizontal.

EndAngle is the ending point of the arc, expressed in tenths of degrees counterclockwise from
the horizontal.

Return value
none

Restrictions
none

See also

fg_arcw(), fg_circle(), fg_ellipse()

46 « Fastgraph 6.0 Reference Manual

fg_arcw()
Prototype
C/C++ void fg arcw (double Radius, int StartAngle, int EndAngle);
C# void fg.arcw (double Radius, int StartAngle, int EndAngle);
Delphi procedure fg arcw (Radius : real; StartAngle, EndAngle :
i nteger);
VB Sub fg_arcw (ByVal Radius As Double, ByVal StartAngle As Long,

ByVal EndAngl e As Long)

VB.NET Sub fg arcw (ByVal Radius As Double, ByVal StartAngle As
I nt eger, ByVal EndAngl e As Integer)

Description

The fg_arcw() function draws a circular arc in 2D world space, centered at the current graphics
position, with clipping. The arc is drawn counterclockwise from the starting angle to the ending
angle.

Parameters

Radius is the arc's radius in horizontal world space units. Its value must be greater than zero. The
radius defines the arc's horizontal distance (at zero degrees) from the current graphics position.

StartAngle is the starting point of the arc, expressed in tenths of degrees counterclockwise from
the horizontal.

EndAngle is the ending point of the arc, expressed in tenths of degrees counterclockwise from
the horizontal.

Return value
none

Restrictions
none

See also

fg_arc(), fg_circlew(), fg_ellipsew()

Fastgraph 6.0 Reference Manual « 47

fg_avidone()

Prototype

C/C++ void fg_avidone (void *Context);

C# voi d fg.avidone (ref byte Context);

Delphi procedure fg_avidone (var Context);

VB Sub fg_avidone (Context() As Any)

VB.NET Sub fg_avidone (ByRef Context As Byte)
Description

The fg_avidone() function closes the AVI file associated with the specified context descriptor.
Parameters

Context is the name of a 48-byte (for playing an AVI) or a 24-byte (for creating an AVI) buffer
containing the AVI file context descriptor.

Return value
none

Restrictions
none

See also
fg_aviopen()

Examples

AVImake, Image

48 « Fastgraph 6.0 Reference Manual

fg_aviframe()

Prototype
C/C++ int fg avifrane (void *Context, void *Bitmap);
C# int fg.avifrane (ref byte Context, ref byte Bitnmap);
Delphi function fg aviframe (var Context, Bitmap) : integer;
VB Euncti on fg avifranme (Context() As Any, Bitmap() As Any) As
ong

VB.NET Function fg_aviframe (ByRef Context As Byte, ByRef Bitmap As
Byte) As Integer

Description

The fg_aviframe() function writes one frame to an AVI file previously opened with fg_avimake().
Parameters

Context is the name of a 24-byte buffer containing the AVI file context descriptor.

Bitmap is a bitmap containing the AVI frame data. The bitmap width and height must be the same
as specified in the fg_avimake() call for this context descriptor. If creating a 256-color AVI,
Bitmap must be a 256-color bitmap. If creating a high color or true color AVI, Bitmap must be a
24-bit direct color bitmap.

Return value
0 = Frame written successfully

- 1 = Error writing the frame
Restrictions

none
See also

fg_avimake(), fg_transdcb()
Examples

AVIimake

Fastgraph 6.0 Reference Manual « 49

fg_avihead()

Prototype
CIC++
C#
Delphi
VB

VB.NET

Description

int fg_avihead (char *Fil eName, void *Header);
int fg.avihead (string FileNane, ref byte Header);
function fg avihead (FileNane : string; var Header) : integer;

Function fg_avi head (ByVal FileNane As String, Header() As Any)
As Long

Function fg_avi head (ByVal FileNane As String, ByRef Header As
Byte) As Integer

The fg_avihead() function reads an AVI file header into a 56-byte buffer. Refer to Appendix E of
the Fastgraph 6.0 User's Guide for details about the AVI header.

Parameters

FileName is the name of the AVI file. It may include a path specification and must be terminated
by a zero byte.

Header is the name of the buffer to receive the AVI file header. Its size must be at least 56 bytes.

Return value

0 = Success

- 1 = The specified file does not exist

- 2 = The specified file is not an AV file

Restrictions

none

See also

fg_avipal(), fg_aviplay(), fg_avisize(), fg_showavi()

Examples

Image

50 « Fastgraph 6.0 Reference Manual

fg_avimake()

Prototype

C/C++ int fg_avimake (char *Fil eName, void *Context, int Conpressor,
int nWdth, int nHeight, int nDepth, int Quality, int Rate);

C# int fg.avimake (string FileNane, ref byte Context, int
Conpressor, int nWdth, int nHeight, int nDepth, int Quality,
int Rate);

Delphi function fg avinake (FileNane : string; var Context;
Conpressor, nWdth, nHeight, nDepth, Quality, Rate : integer)
i nt eger;

VB Function fg_avi nake (ByVal FileNane As String, Context() As
Any, ByVal Conpressor As Long, ByVal nWdth As Long, ByVal
nHei ght As Long, ByVal nDepth As Long, ByVal Quality As Long,
ByVal Rate As Long) As Long

VB.NET Function fg _avinmake (ByVal FileName As String, ByRef Context As
Byte, ByVal Conpressor As Integer, ByVal nwWdth As Integer,
ByVal nHeight As Integer, ByVal nDepth As Integer, ByVal
Quality As Integer, ByVal Rate As Integer) As Integer

Description
The fg_avimake() function creates an empty AVI file that will be built with fg_aviframe().
Parameters

FileName is the name of the AVI file. A device and path name may be included as part of the file
name. The file name must be terminated by a zero byte.

Context is the name of a 24-byte buffer that will receive the AVI file context descriptor. The
descriptor values will only be meaningful if the return value is zero.

Compressor is the four-character code (FourCC) for the compressor that will be used to
compress the video data. It can instead be zero for no compression, or -1 to display a dialog box
to select compression options at run time. Here are the FourCC values for some of the more
popular codecs supplied with Video for Windows:

Codec name FourCC Hex equivalent
Intel Indeo 3.2 V32 49563332
Microsoft Video 1 MSVC 4D535643
Microsoft Run Length Encoding MRLE 4D524C45
Radius Cinepak CVID 43564944

nWidth is the AVI image width in pixels.
nHeight is the AVI image height in pixels.
nDepth is the suggested AVI color depth in bits per pixel.

Quality is the compression quality, between 0 and 10,000. A value of 10,000 indicates lossless
compression; lower values result in increasing degrees of lossy compression. The quality value is
not used if compressor is 0 or -1.

Rate is the video rate in frames per second.

Fastgraph 6.0 Reference Manual ¢ 51

fg_avimake() (continued)

Return value
0 = AVI file created successfully

- 1 = Error creating the AVI file

- 2 = Error creating the AVI video stream

- 3 = User pressed Cancel on the compress options dialog box
Restrictions

none
See also

fg_avidone(), fg_aviframe(), fg_aviopen()
Examples

AVIimake

52 « Fastgraph 6.0 Reference Manual

fg_aviopen()

Prototype
C/C++ int fg_aviopen (char *Fil eName, void *Context);
C# int fg.aviopen (string FileNane, ref byte Context);
Delphi function fg _aviopen (FileNane : string; var Context) : integer;
VB Function fg_aviopen (ByVal FileNane As String, Context() As
Any) As Long

VB.NET Function fg_aviopen (ByVal FileName As String, ByRef Context As
Byte) As Integer

Description
The fg_aviopen() function opens an AVI file for reading.
Parameters

FileName is the name of the AVI file. A device and path name may be included as part of the file
name. The file name must be terminated by a zero byte.

Context is the name of a 48-byte buffer that will receive the AVI file context descriptor. The
descriptor values will only be meaningful if the return value is zero.

Return value
0 = AVI file opened successfully
- 1 = The specified file does not exist
- 2 = The specified file is not an AVI file
- 3 = Error initializing the AVI video stream
- 4 = Error allocating memory
- 5 = The codec needed for the specified AVI file is not available
Restrictions
none
See also
fg_avidone(), fg_avimake()
Examples

Image

Fastgraph 6.0 Reference Manual ¢ 53

fg_avipal()
Prototype
C/C++ int fg avipal (char *FileNane, void *Palette);

C# int fg.avipal (string FileName, ref byte Palette);
int fg.avipal (string FileName, int Null Paran;
Delphi function fg avipal (FileName : string; var Palette) : integer;
VB Function fg_avipal (ByVal FileNanme As String, Palette() As Any)
As Long

VB.NET Function fg avipal (ByVal FileNane As String, ByRef Palette As
Byte) As |nteger
Function fg_avipal (ByVal FileName As String, ByVal Null Param
As Integer) As Integer

Description

The fg_avipal() function retrieves the palette of an image stored in an AVI file. The palette values
are returned as RGB color components, each between 0 and 255.

Parameters
FileName is the name of the AVI file. The file name must be terminated by a zero byte.

Palette is the name of the array that will receive the AVI palette values. The palette values are
returned as RGB color components, each between 0 and 255. The first three bytes of Palette will
contain the RGB values for color 0, the next three for color 1, and so forth. The size of the Palette
array must be at least three times the number of colors in the AVI image. You can also specify
NULL for the Palette parameter (0O for C# and VB.NET, ni | ~ for Delphi, ByVal 0 for Visual
Basic, or BYVAL 9NULL for PowerBASIC). In this case fg_avipal() will return the AVI color depth
but no palette values.

Return value
>0 = The number of colors in the AVI palette
0 = The AVI file does not have a palette (probably a high color or true color AVI file)
- 1 = The specified file does not exist
- 2 = The specified file is not an AV file
Restrictions
none
See also
fg_avihead(), fg_setdacs(), fg_showavi()
Examples

Image

54 « Fastgraph 6.0 Reference Manual

fg_aviplay()

Prototype
CIC++
C#
Delphi

VB

VB.NET

Description

int fg aviplay (void *Context, int nFranes, int Flags);
int fg.aviplay (ref byte Context, int nFranes, int Flags);

function fg aviplay (var Context; nFrames, Flags : integer)
i nt eger;

Function fg_aviplay (Context() As Any, ByVal nFrames As Long,
ByVal Flags As Long) As Long

Function fg_aviplay (ByRef Context As Byte, ByVal nFranes As
Integer, ByVal Flags As Integer) As Integer

The fg_aviplay() function plays the next one or more individual frames in an AVI file that was
previously opened with fg_aviopen().

Parameters

Context is the name of a 48-byte buffer containing the AVI file context descriptor.

nFrames is the number of frames to play from the AVI file, starting from the current file position.

Flags is a series of flags that controls how the AVI is played:

Flag

Meaning

FG_AT_XY If specified, play the AVI file relative to the current graphics

position. If not, play it relative to (0,0).

FG_IGNOREAVIPALETTE If specified, play the AVI file using the current palette. If not,

use the palette values stored in the AVI file. Not meaningful for
high color or true color AVI files.

FG_NODELAY If specified, play the AVI file with no delay between frames. If

not, delay between frames as specified in the AVI header.

Return value

The number of frames played. This value may be less than the value of nFrames if the end-of-file

is reached
Restrictions
none

See also

before playing the requested number of frames.

fg_aviopen(), fg_aviskip(), fg_showavi()

Examples

Image

Fastgraph 6.0 Reference Manual ¢ 55

fg_avisize()
Prototype
C/C++ void fg_avisize (void *Header, int *nWdth, int *nHeight);
C# void fg.avisize (ref byte Header, out int nWdth, out int
nHei ght);
Delphi procedure fg_avisize (var Header; var nWdth, nHeight
i nteger);
VB Sub fg_avisize (Header() As Any, nWdth As Long, nHei ght As
Long)
VB.NET Sub fg avisize (ByRef Header As Byte, ByRef nWdth As |nteger,
ByRef nHei ght As | nteger)
Description

The fg_avisize() function returns the dimensions for the AVI image associated with the specified
AVI file header.

Parameters

Header is the name of the buffer containing the 56-byte AVI file header.

nWidth receives the AVI image width in pixels.

nHeight receives the AVI image height in pixels.

Return value

none

Restrictions

none

See also

fg_avihead(), fg_showavi()

Examples

Image

56 « Fastgraph 6.0 Reference Manual

fg_aviskip()

Prototype
C/C++ int fg aviskip (void *Context, int nFranes);
C# int fg.aviskip (ref byte Context, int nFranes);
Delphi function fg aviskip (var Context; nFrames : integer) : integer;
VB Function fg_aviskip (Context() As Any, ByVal nFranes As Long)
As Long

VB.NET Function fg_aviskip (ByRef Context As Byte, ByVal nFrames As
I nteger) As Integer

Description

The fg_aviskip() function advances one or more frames in an AVI file that was previously
opened with fg_aviopen().

Parameters
Context is the name of a 48-byte buffer containing the AVI file context descriptor.

nFrames is the number of frames to skip in the AVI file, starting from the current file position. If
nFrames is negative, the AVI file position will be set to the first frame.

Return value

The number of frames skipped. This value may be less than the value of nFrames if the end-of-
file is reached before skipping the requested number of frames. If nFrames is negative, the return
value will be zero.

Restrictions

none
See also

fg_aviopen(), fg_aviplay()
Examples

Image

Fastgraph 6.0 Reference Manual ¢ 57

fg_blend()

Prototype
C/C++ int fg blend (int Foreground, int Background);

C# int fg.blend (int Foreground, int Background);
Delphi function fg bl end (Foreground, Background : integer) : integer;
VB Function fg_blend (ByVal Foreground As Long, ByVal Background

As Long) As Long

VB.NET Function fg blend (ByVal Foreground As |nteger, ByVal
Background As Integer) As |nteger

Description

The fg_blend() function computes an alpha-blended color value from the specified foreground
and background colors using the current fg_opacity() setting.

Parameters

Foreground is the foreground color value. For high color virtual buffers, Foreground is encoded
using the 5/6/5 or 5/5/5 RGB color scheme. For true color virtual buffers, Foreground is encoded
as four 8-bit color components (xRGB).

Background is the background color value, encoded the same way as the foreground color.
Return value

The alpha-blended color value, encoded the same way as the foreground and background colors.
Restrictions

This function is meaningful only with direct color virtual buffers.
See also

fg_blend50(), fg_blenddchb(), fg_blendvar(), fg_blendvb(), fg_blendvbv(), fg_opacity()

58 « Fastgraph 6.0 Reference Manual

fg_blend50()

Prototype
C/C++ int fg_blend50 (int Foreground, int Background);

C# int fg.blend50 (int Foreground, int Background);
Delphi function fg bl end50 (Foreground, Background : integer)
i nteger;
VB Function fg_bl end50 (ByVal Foreground As Long, ByVal Background

As Long) As Long

VB.NET Function fg bl end50 (ByVal Foreground As |Integer, ByVal
Background As Integer) As |nteger

Description

The fg_blend50() function computes a 50% alpha-blended color value from the specified
foreground and background colors.

Parameters

Foreground is the foreground color value. For high color virtual buffers, Foreground is encoded
using the 5/6/5 or 5/5/5 RGB color scheme. For true color virtual buffers, Foreground is encoded
as four 8-bit color components (xRGB).

Background is the background color value, encoded the same way as the foreground color.
Return value

The 50% alpha-blended color value, encoded the same way as the foreground and background
colors.

Restrictions
This function is meaningful only with direct color virtual buffers.
See also
fg_blend(), fg_blenddcb(), fg_blendvar(), fg_blendvb(), fg_blendvbv()

Fastgraph 6.0 Reference Manual ¢ 59

fg_blenddchb()

Prototype
C/C++

C#

Delphi

VB

VB.NET

Description

voi d fg bl enddcb (void *Foreground, void *Background, void
*Bl ended, int nSize);

voi d fg.blenddcb (ref byte Foreground, ref byte Background, ref
byte Bl ended, int nSize);

procedure fg bl enddcb (var Foreground, Background, Bl ended;
nSi ze : integer);

Sub fg_bl enddcb (Foreground() As Any, Background() As Any,
Bl ended() As Any, ByVal nSize As Long)

Sub fg_bl enddcb (ByRef Foreground As Byte, ByRef Background As
Byte, ByRef Bl ended As Byte, ByVal nSize As |nteger)

The fg_blenddch() function computes an alpha-blended bitmap from the specified foreground
and background bitmaps using the current fg_opacity() setting.

Parameters

Foreground is the name of the array containing the foreground direct color bitmap.

Background is the name of the array containing the background direct color bitmap.

Blended is the name of the array that will receive the resulting alpha blended direct color bitmap.
It must be at least as large as the Foreground and Background arrays.

nSize is the size of each direct color bitmap in pixels.

Return value

none

Restrictions

This function is meaningful only with direct color virtual buffers.

See also

fg_blend(), fg_blend50(), fg_blendvar(), fg_blendvb(), fg_blendvbv(), fg_opacity()

Examples
Blend

60 « Fastgraph 6.0 Reference Manual

fg_blendvar()

Prototype
C/C++

C#

Delphi

VB

VB.NET

Description

voi d fg bl endvar (void *Foreground, void *Background, void
*(pacity, void *Blended, int nSize);

voi d fg.blendvar (ref byte Foreground, ref byte Background, ref
byte Qpacity, ref byte Blended, int nSize);

procedure fg bl endvar (var Foreground, Background, Opacity,
Bl ended; nSize : integer);

Sub fg_bl endvar (Foreground() As Any, Background() As Any,
pacity() As Any, Blended() As Any, ByVal nSize As Long)

Sub fg_bl endvar (ByRef Foreground As Byte, ByRef Background As
Byte, ByRef Opacity As Byte, ByRef Blended As Byte, ByVal nSize
As | nt eger)

The fg_blendvar() function computes an alpha-blended bitmap from the specified foreground
and background bitmaps using the specified opacity bitmap.

Parameters

Foreground is the name of the array containing the foreground direct color bitmap.

Background is the name of the array containing the background direct color bitmap.

Opacity is the name of the array containing the opacity values, represented as a 256-color

bitmap.

Blended is the name of the array that will receive the resulting alpha blended direct color bitmap.
It must be at least as large as the Foreground and Background arrays.

nSize is the size of each direct color bitmap in pixels.

Return value
none

Restrictions

This function is meaningful only with direct color virtual buffers.

See also

fg_blend(),

Examples
Blend

fg_blend50(), fg_blenddchb(), fg_blendvb(), fg_blendvbv()

Fastgraph 6.0 Reference Manual « 61

fg_blendvb()

Prototype

C/C++ voi d fg bl endvb (void *Foreground, void *Background, int
nWdth, int nHeight);

C# voi d fg.blendvb (ref byte Foreground, ref byte Background, int
nWdth, int nHeight);
voi d fg.blendvb (ref byte Foreground, int NullParam int
nWdth, int nHeight);

Delphi procedure fg bl endvb (var Foreground, Background; nW dth,
nHei ght : integer);

VB Sub fg_bl endvb (Foreground() As Any, Background() As Any, ByVal
nWdth As Long, ByVal nHeight As Long)

VB.NET Sub fg bl endvb (ByRef Foreground As Byte, ByRef Background As
Byte, ByVal nWdth As Integer, ByVal nHeight As |nteger)
Sub fg_bl endvb (ByRef Foreground As Byte, ByVal Null Param As
Integer, ByVal nWdth As Integer, ByVal nHeight As Integer)

Description

The fg_blendvb() function computes an alpha-blended image from the specified foreground and
background bitmaps using the current fg_opacity() setting. The resulting alpha-blended image is
written to the active virtual buffer; the current graphics position defines the lower left corner of the
blending region.

Parameters
Foreground is the name of the array containing the foreground direct color bitmap.

Background is the name of the array containing the background direct color bitmap. If
Background is NULL (O for C# and VB.NET, ni | ~ for Delphi, ByVal 0 for Visual Basic, or
BYVAL 9NULL for PowerBASIC), fg_blendvb() gets the background pixels from the same area
of the active virtual buffer where the blended pixels will be written.

nWidth is the width of each direct color bitmap in pixels.
nHeight is the height of each direct color bitmap in pixels.
Return value
none
Restrictions
This function is meaningful only with direct color virtual buffers.

See also

fg_blend(), fg_blend50(), fg_blenddcb(), fg_blendvar(), fg_blendvbv(), fg_opacity()

62 « Fastgraph 6.0 Reference Manual

fg_blendvbv()

Prototype

C/C++ voi d fg bl endvbv (void *Foreground, void *Background, void
*Qpacity, int nWdth, int nHeight);

C# voi d fg. bl endvbv (ref byte Foreground, ref byte Background, ref
byte Qpacity, int nWdth, int nHeight);
voi d fg.blendvbv (ref byte Foreground, int NullParam ref byte
Qpacity, int nWdth, int nHeight);

Delphi procedure fg bl endvbv (var Foreground, Background, Opacity;
nW dt h, nHeight : integer);

VB Sub fg_bl endvbv (Foreground() As Any, Background() As Any,
Qpacity() As Any, Byval nWdth As Long, ByVal nHeight As Long)

VB.NET Sub fg bl endvbv (ByRef Foreground As Byte, ByRef Background As
Byte, ByRef Opacity As Byte, ByVal nWdth As |nteger, ByVal
nHei ght As | nteger)

Sub fg_bl endvbv (ByRef Foreground As Byte, ByVal Null Param As
I nteger, ByRef Qpacity As Byte, ByVal nWdth As Integer, ByVal
nHei ght As | nteger)

Description

The fg_blendvbv() function computes an alpha-blended image from the specified foreground
and background bitmaps using the specified opacity bitmap. The resulting alpha-blended image
is written to the active virtual buffer; the current graphics position defines the lower left corner of
the blending region.

Parameters
Foreground is the name of the array containing the foreground direct color bitmap.

Background is the name of the array containing the background direct color bitmap. If
Background is NULL (O for C# and VB.NET, ni | ~ for Delphi, ByVal 0 for Visual Basic, or
BYVAL 9NULL for PowerBASIC), fg_blendvbv() gets the background pixels from the same area
of the active virtual buffer where the blended pixels will be written.

Opacity is the name of the array containing the opacity values, represented as a 256-color
bitmap.

nWidth is the width of each direct color bitmap in pixels.
nHeight is the height of each direct color bitmap in pixels.
Return value
none
Restrictions
This function is meaningful only with direct color virtual buffers.
See also
fg_blend(), fg_blend50(), fg_blenddchb(), fg_blendvar(), fg_blendvb()

Fastgraph 6.0 Reference Manual « 63

fg_bmphead()

Prototype
CIC++
C#
Delphi
VB

VB.NET

Description

int fg bnphead (char *Fil eName, void *Header);
int fg.bnphead (string FileNane, ref byte Header);
function fg bnphead (FileNane : string; var Header) : integer;

Function fg_bnphead (ByVal FileNane As String, Header() As Any)
As Long

Function fg_bnphead (ByVal FileNane As String, ByRef Header As
Byte) As Integer

The fg_bmphead() function reads a BMP file header into a 54-byte buffer. Refer to Appendix E
of the Fastgraph 6.0 User's Guide for details about the BMP header.

Parameters

FileName is the name of the BMP file. It may include a path specification and must be terminated
by a zero byte.

Header is the name of the buffer to receive the BMP file header. Its size must be at least 54

bytes.

Return value

0 = Success

- 1 = The specified file does not exist

- 2 = The specified file is not a BMP file

Restrictions

none

See also

fg_bmppal(), fg_bmpsize(), fg_showbmp()

Examples

Image, ImgProc

64 « Fastgraph 6.0 Reference Manual

fg_bmppal()

Prototype
C/C++ int fg bnppal (char *FileNane, void *Palette);

C# int fg.bnppal (string FileName, ref byte Palette);
int fg.bnppal (string FileName, int Null Paran;
Delphi function fg bnppal (FileName : string; var Palette) : integer;
VB Function fg_bnppal (ByVal FileNanme As String, Palette() As Any)
As Long

VB.NET Function fg bnppal (ByVal FileNane As String, ByRef Palette As
Byte) As |nteger
Function fg_bnppal (ByVal FileName As String, ByVal Null Param
As Integer) As Integer

Description

The fg_bmppal() function retrieves the palette of an image stored in a BMP file. The palette
values are returned as RGB color components, each between 0 and 255.

Parameters
FileName is name of the BMP file. The file name must be terminated by a zero byte.

Palette is the name of the array that will receive the BMP palette values. The palette values are
returned as RGB color components, each between 0 and 255. The first three bytes of Palette will
contain the RGB values for color 0, the next three for color 1, and so forth. The size of the Palette
array must be at least three times the number of colors in the BMP palette. You can also specify
NULL for the Palette parameter (0O for C# and VB.NET, ni | ~ for Delphi, ByVal 0 for Visual
Basic, or BYVAL 9NULL for PowerBASIC). In this case fg_bmppal() will return the image's color
depth but no palette values.

Return value
>0 = The number of colors in the BMP palette
0 = The BMP file does not have a palette (probably a 24-bit BMP file)
- 1 = The specified file does not exist
- 2 = The specified file is not a BMP file
Restrictions
none
See also
fg_bmphead(), fg_setdacs(), fg_showbmp()
Examples

Image, ImgProc

Fastgraph 6.0 Reference Manual ¢ 65

fg_bmpsize()

Prototype
C/C++
C#

Delphi

VB

VB.NET

Description

void fg bnpsize (void *Header, int *nWdth, int *nHeight);

voi d fg. bnpsize (ref byte Header, out int nWdth, out int
nHei ght);

procedure fg bnpsize (var Header; var nWdth, nHei ght
i nteger);

Sub fg_bnpsize (Header() As Any, nWdth As Long, nHei ght As
Long)

Sub fg_bnpsize (ByRef Header As Byte, ByRef nWdth As Integer,
ByRef nHei ght As | nteger)

The fg_bmpsize() function returns the dimensions for the BMP image associated with the
specified BMP file header.

Parameters

Header is the name of the buffer containing the 54-byte BMP file header.

nWidth receives the BMP image width in pixels. If Header does not contain a valid BMP file
header, nWidth will be set to -1.

nHeight receives the BMP image height in pixels. If Header does not contain a valid BMP file
header, nHeight will be set to -1.

Return value

none

Restrictions

none

See also

fg_bmphead(), fg_showbmp()

Examples

Image, ImgProc

66 « Fastgraph 6.0 Reference Manual

fg_box()

Prototype
C/C++ void fg box (int xMn, int xMax, int yMn, int yMax);
C# void fg.box (int xMn, int xMax, int yMn, int yMax);

Delphi procedure fg box (xMn, xMax, yMn, yMax : integer);

VB Sub fg_box (Byval xMn As Long, ByVal xMax As Long, ByVal yMn
As Long, ByVal yMax As Long)

VB.NET Sub fg box (ByVal xMn As Integer, ByVal xMax As |nteger, ByVal
yMn As Integer, ByVal yMax As I|nteger)

Description

The fg_box() function draws an unfilled rectangle in screen space, with clipping. The width of the
rectangle's edges is one pixel unless changed with fg_boxdepth().

Parameters
XMin is the x coordinate of the rectangle's left edge.

xMax is the x coordinate of the rectangle's right edge. It must be greater than or equal to the
value of xMin.

yMin is the y coordinate of the rectangle's top edge.

yMax is the y coordinate of the rectangle's bottom edge. It must be greater than or equal to the
value of yMin.

Return value
none
Restrictions
none
See also
fg_boxdepth(), fg_boxw(), fg_boxx(), fg_rect()
Examples

Graphics

Fastgraph 6.0 Reference Manual « 67

fg_boxdepth()

Prototype
C/C++ voi d fg boxdepth (int xDepth, int yDepth);
C# voi d fg. boxdepth (int xDepth, int yDepth);
Delphi procedure fg boxdepth (xDepth, yDepth : integer);
VB Sub fg_boxdepth (ByVal xDepth As Long, ByVal yDepth As Long)
VB.NET Sub fg boxdepth (ByVal xDepth As Integer, ByVal yDepth As
I nt eger)
Description

The fg_boxdepth() function defines the depth of rectangles drawn with the box display functions.
The fg_vbinit() function initializes the box depth to one pixel in each direction.

Parameters
xDepth is the width in pixels of the rectangle’s left and right sides. It must be greater than zero.

yDepth is the height in pixels of the rectangle's top and bottom sides. It must be greater than
zero.

Return value
none

Restrictions
none

See also

fg_box(), fg_boxw(), fg_boxx(), fg_boxxw()

68 ¢ Fastgraph 6.0 Reference Manual

fg_boxw()

Prototype
C/C++ voi d fg _boxw (double xM n, double xMax, double yM n,
yMax) ;
C# voi d fg. boxw (double xM n, double xMax, double yM n,
yMax) ;

Delphi procedure fg boxw (xMn, xMax, yMn, yMax : real);

VB Sub fg_boxw (ByVal xM n As Doubl e, ByVal xMax As Doubl e,

yMn As Doubl e, ByVval yMax As Doubl e)

VB.NET Sub fg boxw (ByVal xMn As Doubl e, ByVal xMax As Doubl e,

yMn As Doubl e, ByVal yMax As Doubl e)

Description

The fg_boxw/() function draws an unfilled rectangle in 2D world space, with clipping. The width of

the rectangle's edges is one pixel unless changed with fg_boxdepth().
Parameters

xMin is the world space x coordinate of the rectangle's left edge.

xMax is the world space x coordinate of the rectangle's right edge. It must be greater than or

equal to the value of xMin.

yMin is the world space y coordinate of the rectangle's bottom edge.

yMax is the world space y coordinate of the rectangle's top edge. It must be greater than or equal

to the value of yMin.
Return value

none
Restrictions

none
See also

fg_box(), fg_boxdepth(), fg_boxxw(), fg_rectw()

Fastgraph 6.0 Reference Manual « 69

fg_boxx()

Prototype
C/C++ void fg boxx (int xMn, int xMax, int yMn, int yMax);
C# void fg.boxx (int xMn, int xMax, int yMn, int yMax);
Delphi procedure fg boxx (xMn, xMax, yMn, yMax : integer);

VB Sub fg_boxx (ByVal xMn As Long, ByVal xMax As Long, ByVal yMn
As Long, ByVal yMax As Long)

VB.NET Sub fg boxx (ByVal xMn As |Integer, ByVal xMax As |nteger,
ByVal yMn As Integer, ByVal yMax As | nteger)

Description

The fg_boxx() function draws an unfilled rectangle in "exclusive or" mode in screen space, with
clipping. The width of the rectangle's edges is one pixel unless changed with fg_boxdepth().

Parameters
XMin is the x coordinate of the rectangle's left edge.

xMax is the x coordinate of the rectangle's right edge. It must be greater than or equal to the
value of xMin.

yMin is the y coordinate of the rectangle's top edge.

yMax is the y coordinate of the rectangle's bottom edge. It must be greater than or equal to the
value of yMin.

Return value
none

Restrictions
none

See also

fg_box(), fg_boxdepth(), fg_boxxw(), fg_rectx()

70 « Fastgraph 6.0 Reference Manual

fg_boxxw()

Prototype
C/C++

C#

Delphi
VB

VB.NET

Description

voi d fg _boxxw (double xMn, double xMax, double yMn, double
yMax) ;

voi d fg. boxxw (double xMn, double xMax, double yMn, double
yMax) ;

procedure fg boxxw (xMn, xMax, yMn, yMax : real);

Sub fg_boxxw (ByVal xMn As Doubl e, ByVal xMax As Doubl e, ByVal
yMn As Doubl e, ByVal yMax As Doubl e)

Sub fg_boxxw (ByVal xMn As Doubl e, ByVal xMax As Doubl e, ByVal
yMn As Doubl e, ByVal yMax As Doubl e)

The fg_boxxw() function draws an unfilled rectangle in "exclusive or" mode in 2D world space,
with clipping. The width of the rectangle's edges is one pixel unless changed with fg_boxdepth().

Parameters

XMin is the world space x coordinate of the rectangle's left edge.

xMax is the world space x coordinate of the rectangle's right edge. It must be greater than or
equal to the value of xMin.

yMin is the world space y coordinate of the rectangle's bottom edge.

yMax is the world space y coordinate of the rectangle's top edge. It must be greater than or equal
to the value of yMin.

Return value
none

Restrictions
none

See also

fg_boxdepth(), fg_boxw(), fg_boxx()

Fastgraph 6.0 Reference Manual ¢ 71

fg_circle()

Prototype
C/C++ void fg circle (int Radius);
C# void fg.circle (int Radius);
Delphi procedure fg circle (Radius : integer);
VB Sub fg_ circle (ByVal Radius As Long)
VB.NET Sub fg circle (ByVal Radius As |nteger)
Description

The fg_circle() function draws an unfilled circle in screen space. The circle is centered at the
current graphics cursor position.

Parameters
Radius defines the circle's radius in screen space units. It must be greater than zero.
Return value
none
Restrictions
none
See also
fg_arc(), fg_circlef(), fg_circlew(), fg_ellipse()
Examples

Graphics

72 « Fastgraph 6.0 Reference Manual

fg_circlef()

Prototype
C/C++ void fg circlef (int Radius);
C# void fg.circlef (int Radius);
Delphi procedure fg circlef (Radius : integer);
VB Sub fg_circlef (ByVal Radius As Long)
VB.NET Sub fg circlef (ByVal Radius As Integer)
Description

The fg_circlef() function draws a filled circle in screen space. The circle is centered at the current
graphics cursor position and is filled with pixels of the current color.

Parameters
Radius defines the circle's radius in screen space units. It must be greater than zero.
Return value
none
Restrictions
none
See also

fg_circle(), fg_circlefw(), fg_ellipsef()

Fastgraph 6.0 Reference Manual ¢ 73

fg_circlefw()

Prototype
C/C++ void fg circlefw (doubl e Radius);
C# void fg.circlefw (doubl e Radius);

Delphi procedure fg circlefw (Radius : real);

VB Sub fg_circlefw (ByVal Radius As Doubl e)

VB.NET Sub fg circlefw (ByVal Radius As Doubl e)
Description

The fg_circlefw() function draws a filled circle in 2D world space. The circle is centered at the
current graphics cursor position and is filled with pixels of the current color.

Parameters
Radius defines the circle's radius in horizontal world space units. It must be greater than zero.
Return value
none
Restrictions
none
See also

fg_circlef(), fg_circlew(), fg_ellipsfw()

74 « Fastgraph 6.0 Reference Manual

fg_circlew()

Prototype
C/C++ void fg_circlew (doubl e Radi us);
C# void fg.circlew (doubl e Radi us);

Delphi procedure fg circlew (Radius : real);

VB Sub fg_circlew (ByVal Radius As Doubl e)

VB.NET Sub fg circlew (ByVal Radius As Doubl e)
Description

The fg_circlew() function draws an unfilled circle in 2D world space. The circle is centered at the
current graphics cursor position.

Parameters
Radius defines the circle's radius in horizontal world space units. It must be greater than zero.
Return value
none
Restrictions
none
See also

fg_arcw(), fg_circle(), fg_circlefw(), fg_ellipsew()

Fastgraph 6.0 Reference Manual ¢ 75

fg_clip2vb()

Prototype

C/C++ int fg clip2vb (int xMn, int xMax, int yMn, int yMax, int
Fl ags) ;

C# int fg.clip2vb (int xMn, int xMax, int yMn, int yMax, int
Fl ags) ;

Delphi function fg clip2vb (xMn, xMax, yMn, yMax, Flags : integer)
i nt eger;

VB Function fg_clip2vb (ByvVal xMn As Long, ByVal xMax As Long,
ByVal yMn As Long, ByVal yMax As Long, ByVal Flags As Long) As
Long

VB.NET Function fg clip2vb (ByVal xMn As |Integer, ByVal xMax As
Integer, ByVal yMn As Integer, ByVal yMax As |nteger, ByVal
Fl ags As Integer) As |nteger

Description

The fg_clip2vb() function copies a rectangular region from the Windows clipboard to the active
virtual buffer. The region’s extremes are expressed in screen space units.

Parameters
XMin is the x coordinate of the source region's left edge.

XxMax is the x coordinate of the source region's right edge. It must be greater than or equal to the
value of xMin. If the clipboard image width is less than the width of the specified transfer region,
xMax is reduced to xMin+width-1.

yMin is the y coordinate of the source region's top edge. If the clipboard image height is less than
the height of the transfer region, yMin is reduced to yMax-height+1.

yMax is the y coordinate of the source region's bottom edge. It must be greater than or equal to
the value of yMin.

Flags is a bit mask that controls how the resulting image is displayed and whether we cut or copy
the clipboard contents, as shown here:

Bit Value Meaning

0 0 Update the logical palette with the clipboard palette data
0 1 Ignore the clipboard palette data

1 0 Empty clipboard after copying its contents (cut)

1 1 Keep clipboard contents intact (copy)

All other bits are reserved for future use and should be zero.
Return value
0 = Success
- 1 = Another application has control of the clipboard
- 2 = The clipboard does not contain a DIB image

- 3 = The color depth of the clipboard image does not match the virtual buffer color depth

76 « Fastgraph 6.0 Reference Manual

fg_clip2vb() (continued)

Restrictions

If the clipboard image width or height exceeds the size of the transfer region, the clipboard image
is truncated at the boundaries of the transfer region.

See also
fg_vb2clip()

Examples
CBdemo

Fastgraph 6.0 Reference Manual ¢ 77

fg_clipdchb()
Prototype
C/C++ void fg clipdcbh (void *Bitmap, int nWdth, int nHeight);
C# void fg.clipdcb (ref byte Bitmap, int nWdth, int nHeight);
Delphi procedure fg clipdcb (var Bitrmap; nWdth, nHeight : integer);
VB Sub fg_clipdcb (Bitmap() As Any, ByVal nWdth As Long, ByVal
nHei ght As Long)
VB.NET Sub fg clipdcb (ByRef Bitnap As Byte, ByVal nWdth As |nteger,
ByVal nHei ght As | nteger)
Description

The fg_clipdcb() function displays a direct color bitmap, with clipping. The bitmap will be
positioned so that its lower left corner is at the graphics cursor position. Color 0 pixels will be
considered transparent.

For high color virtual buffers, each pixel in the bitmap is a 16-bit (two byte) encoded RGB value.
For true color virtual buffers, each pixel is a 24-bit (three byte) RGB value, stored blue byte first,
then green byte, then red byte. Refer to Chapter 8 of the Fastgraph 6.0 User's Guide for
complete information about direct color bitmaps.

Parameters

Bitmap is the name of the array containing the bitmap.

nWidth is the bitmap width in pixels.

nHeight is the bitmap height in pixels.

Return value

none

Restrictions

This function is meaningful only with direct color virtual buffers.

See also

fg_clipmap(), fg_clpimage(), fg_drawdchb(), fg_flipdch(), fg_getdcb(), fg_invdcb(), fg_putdcb(),
fg_revdch()

Examples
Dch

78 « Fastgraph 6.0 Reference Manual

fg_clipmap()

Prototype
C/C++ void fg clipmap (void *Bitmap, int nWdth, int nHeight);
C# void fg.clipmap (ref byte Bitmap, int nWdth, int nHeight);
Delphi procedure fg cliprmap (var Bitmap; nWdth, nHeight : integer);

VB Sub fg_clipmap (Bitmap() As Any, ByVal nWdth As Long, ByVal
nHei ght As Long)

VB.NET Sub fg cliprmap (ByRef Bitnap As Byte, ByVal nWdth As |nteger,
ByVal nHei ght As | nteger)

Description

The fg_clipmap() function displays a monochrome bitmap, with clipping. The bitmap will be
displayed so that its lower left corner is at the graphics cursor position. Refer to Chapter 8 of the
Fastgraph 6.0 User's Guide for complete information about monochrome bitmaps.

Parameters

Bitmap is the name of the array containing the bitmap. Each byte of Bitmap represents eight
pixels. Bits that are set (1) result in the corresponding pixel being displayed in the current color.
Bits that are reset (0) leave the corresponding pixel unchanged.

nWidth is the bitmap width in bytes.
nHeight is the bitmap height in bytes.
Return value
none
Restrictions
none
See also
fg_clipdch(), fg_clpimage(), fg_drawmap(), fg_getmap(), fg_invert()
Examples

Monomap

Fastgraph 6.0 Reference Manual ¢ 79

fg_clipmask()

Prototype
C/C++ void fg clipmask (void *Bitmap, int nRuns, int nWdth);
C# void fg.clipmask (ref byte Bitmap, int nRuns, int nWdth);
Delphi procedure fg clipnmask (var Bitmap; nRuns, nWdth : integer);

VB Sub fg_clipmask (Bitmap() As Any, ByVal nRuns As Long, ByVal
nWdth As Long)

VB.NET Sub fg clipnmask (ByRef Bitmap As Byte, ByVal nRuns As |nteger,
ByVal nWdth As Integer)

Description

The fg_clipmask() legacy function displays a masking map, with clipping. The masking map will
be positioned so that its lower left corner is at the graphics cursor position.

Parameters

Bitmap is the name of the array containing the masking map. The masking map is a series of
alternating "protect” and "zero" pixel runs. The "protect" runs leave the corresponding virtual
buffer pixels unchanged, while the "zero" runs set them to color zero. The length of each run
must be between 0 and 255.

nRuns is the number of pixel runs in the masking map.
nWidth is the masking map width in pixels.
Return value
none
Restrictions
none
Replaced by

256-color bitmap functions.

80 « Fastgraph 6.0 Reference Manual

fg_clpimage()

Prototype
C/C++ void fg clpinage (void *Bitmap, int nWdth, int nHeight);
C# void fg.clpinage (ref byte Bitmap, int nWdth, int nHeight);
Delphi procedure fg cl pinage (var Bitmap; nWdth, nHeight : integer);

VB Sub fg_clpinmage (Bitmap() As Any, ByVal nWdth As Long, ByVal
nHei ght As Long)

VB.NET Sub fg clpinmage (ByRef Bitmap As Byte, ByVal nWdth As Integer,
ByVal nHei ght As | nteger)

Description

The fg_clpimage() function displays a 256-color bitmap, with clipping. The bitmap will be
positioned so that its lower left corner is at the graphics cursor position. Refer to Chapter 8 of the
Fastgraph 6.0 User's Guide for complete information about 256-color bitmaps.

Parameters
Bitmap is the name of the array containing the bitmap.
nWidth is the bitmap width in pixels.
nHeight is the bitmap height in pixels.
Return value
none
Restrictions
none
See also

fg_clipdcb(), fg_clipmap(), fg_drwimage(), fg_flpimage(), fg_getimage(), fg_invert(),
fg_putimage(), fg_revimage(), fg_setclip()

Examples

Bitmap, Fishtank

Fastgraph 6.0 Reference Manual « 81

fg_clprect()

Prototype
C/C++ void fg clprect (int xMn, int xMax, int yMn, int yMax);
C# void fg.clprect (int xMn, int xMax, int yMn, int yMax);
Delphi procedure fg clprect (xMn, xMax, yMn, yMax : integer);

VB Sub fg_clprect (ByvVal xMn As Long, ByVal xMax As Long, ByVal
yMn As Long, ByVal yMax As Long)

VB.NET Sub fg clprect (ByVal xMn As |Integer, ByVal xMax As I|nteger,
ByVal yMn As Integer, ByVal yMax As | nteger)

Description

The fg_clprect() function draws a solid (filled) rectangle in screen space, with clipping.
Parameters

XMin is the screen space x coordinate of the rectangle's left edge.

XxMax is the screen space x coordinate of the rectangle's right edge. It must be greater than or
equal to the value of xMin.

yMin is the screen space y coordinate of the rectangle's top edge.

yMax is the screen space y coordinate of the rectangle's bottom edge. It must be greater than or
equal to the value of yMin.

Return value
none

Restrictions
none

See also

fg_clprectw(), fg_clprectx(), fg_rect(), fg_rectw(), fg_setclip()

82 « Fastgraph 6.0 Reference Manual

fg_clprectw()

Prototype
C/C++ void fg clprectw (double xM n, doubl e xMax, double yMn, double
yMax) ;
C# void fg.clprectw (double xM n, doubl e xMax, double yMn, double
yMax) ;

Delphi procedure fg clprectw (xMn, xMax, yMn, yMax : real);

VB Sub fg_clprectw (ByVal xMn As Doubl e, ByVal xMax As Doubl e,
ByVal yMn As Doubl e, ByVal yMax As Doubl e)

VB.NET Sub fg clprectw (ByVal xMn As Doubl e, ByVal xMax As Doubl e,
ByVal yMn As Doubl e, ByVal yMax As Doubl e)

Description

The fg_clprectw() function draws a solid (filled) rectangle in 2D world space, with clipping.
Parameters

xMin is the world space x coordinate of the rectangle's left edge.

xMax is the world space x coordinate of the rectangle's right edge. It must be greater than or
equal to the value of xMin.

yMin is the world space y coordinate of the rectangle's bottom edge.

yMax is the world space y coordinate of the rectangle's top edge. It must be greater than or equal
to the value of yMin.

Return value
none

Restrictions
none

See also

fg_clprect(), fg_rect(), fg_rectw(), fg_setclipw()

Fastgraph 6.0 Reference Manual « 83

fg_clprectx()

Prototype
C/C++ void fg clprectx (int xMn, int xMax, int yMn, int yMax);
C# void fg.clprectx (int xMn, int xMax, int yMn, int yMax);
Delphi procedure fg clprectx (xMn, xMax, yMn, yMax : integer);

VB Sub fg_clprectx (ByVal xMn As Long, ByVal xMax As Long, ByVal
yMn As Long, ByVal yMax As Long)

VB.NET Sub fg clprectx (ByVal xMn As |Integer, ByVal xMax As |nteger,
ByVal yMn As Integer, ByVal yMax As | nteger)

Description

The fg_clprectx() function draws a solid (filled) rectangle in “exclusive or” mode in screen space,
with clipping.

Parameters
XMin is the x coordinate of the rectangle’s left edge.

xMax is the x coordinate of the rectangle’s right edge. It must be greater than or equal to the
value of xMin.

yMin is the y coordinate of the rectangle’s top edge.

yMax is the y coordinate of the rectangle’s bottom edge. It must be greater than or equal to the
value of yMin.

Return value
none

Restrictions
none

See also

fg_clprect(), fg_rectw(), fg_setclip()

84 « Fastgraph 6.0 Reference Manual

fg_colors()
Prototype
C/C++ int fg colors (void);
C# int fg.colors ();
Delphi function fg colors : integer;
VB Function fg_colors () As Long

VB.NET Function fg colors () As Integer
Description

The fg_colors() function returns the display driver’s color depth in bits per pixel.
Parameters

none
Return value

The display driver's color depth in bits per pixel. For example, a return value of 8 means the
display driver is currently set to 8 bits per pixel, or 256 colors.

Restrictions
none

See also
fg_getdepth()

Examples

Colors, Columns, Cube, Display, Fade, FirstDD, Rainbow, TMcubeX, Tunnel

Fastgraph 6.0 Reference Manual « 85

fg_contdcb()

Prototype

C/C++ void fg _contdcb (void *Source, void *Dest, int nLower, int
nUpper, int nSize);

C# void fg.contdch (ref byte Source, ref byte Dest, int nLower,
i nt nUpper, int nSize);

Delphi procedure fg contdcb (var Source, Dest; nLower, nUpper, nSize :
i nteger);

VB Sub fg_contdcb (Source() As Any, Dest() As Any, ByVal nLower As
Long, ByVal nUpper As Long, ByVal nSize As Long)

VB.NET Sub fg contdcb (ByRef Source As Byte, ByRef Dest As Byte, ByVal

nLower As |nteger, ByVal nUpper As Integer, ByVal nSize As
I nt eger)

Description

The fg_contdcb() function applies a contrast enhancement transform to a direct color bitmap.
Parameters

Source is the name of the array containing the direct color bitmap to be transformed.

Dest is the name of the array that will receive the resulting transformed bitmap.

nLower is the lower bound. All color components below this value will be set to zero. It must be
between 0 and 254.

nUpper is the upper bound. All color components above this value will be set to 255. It must be
between 1 and 255 and greater than the lower bound.

nSize is the size of each direct color bitmap in pixels.
Return value

none
Restrictions

This function is meaningful only with direct color virtual buffers.
See also

fg_contrgb(), fg_contvb()

86 ¢ Fastgraph 6.0 Reference Manual

fg_contrgb()

Prototype

C/C++ void fg contrgb (void *Val ues, int nLower, int nUpper, int
nCount) ;

C# void fg.contrgb (ref byte Values, int nLower, int nUpper, int
nCount) ;

Delphi procedure fg contrgb (var Val ues; nLower, nUpper, nCount
i nteger);

VB Sub fg_contrgb (Values() As Any, ByVal nLower As Long, ByVal

nUpper As Long, ByVal nCount As Long)

VB.NET Sub fg contrgb (ByRef Values As Byte, ByVal nLower As |nteger,
ByVal nUpper As Integer, ByVal nCount As |nteger)

Description

The fg_contrgb() function applies a contrast enhancement transform to a series of RGB color
triples.

Parameters

Values is the name of the array containing the RGB color components, arranged as three-byte
RGB triples. Each RGB color component is a value between 0 and 255; increasing values
produce more intense colors. The size of the Values array must be at least 3*nCount bytes.

nLower is the lower bound. All color components below this value will be set to zero. It must be
between 0 and 254.

nUpper is the upper bound. All color components above this value will be set to 255. It must be
between 1 and 255 and greater than the lower bound.

nCount is the number of RGB color triples to transform.
Return value

none
Restrictions

none
See also

fg_contdcb(), fg_contvb()

Fastgraph 6.0 Reference Manual « 87

fg_contvb()

Prototype
C/C++

C#

Delphi

VB

VB.NET

Description

void fg contvb (int nLower, int nUpper, int nWdth, int
nHei ght);

void fg.contvb (int nLower, int nUpper, int nWdth, int
nHei ght);

procedure fg contvb (nLower, nUpper, nWdth, nHeight
i nteger);

Sub fg_contvb (ByVal nLower As Long, ByVal nUpper As Long,
ByVal nWdth As Long, ByVal nHeight As Long)

Sub fg_contvb (ByVal nLower As |nteger, ByVal nUpper As
Integer, ByVal nWdth As Integer, ByVal nHeight As Integer)

The fg_contvb() function applies a contrast enhancement transform to a rectangular region of
the active virtual buffer. The region's lower left corner is at the current graphics position.

Parameters

nLower is the lower bound. All color components below this value will be set to zero. It must be
between 0 and 254.

nUpper is the upper bound. All color components above this value will be set to 255. It must be
between 1 and 255 and greater than the lower bound.

nWidth is the region's width in pixels.

nHeight is the region's height in pixels.

Return value

none

Restrictions

This function is meaningful only with direct color virtual buffers.

See also

fg_contdcb(), fg_contrgb()

Examples

ImgProc

88 ¢ Fastgraph 6.0 Reference Manual

fg_copypage()

Prototype
C/C++ voi d fg copypage (int Source, int Dest);
C# voi d fg.copypage (int Source, int Dest);
Delphi procedure fg copypage (Source, Dest : integer);
VB Sub fg_copypage (ByVal Source As Long, ByVal Dest As Long)
VB.NET Sub fg copypage (ByVal Source As Integer, ByVal Dest As
I nt eger)
Description

The fg_copypage() function transfers the contents of one virtual buffer to another virtual buffer
with the same dimensions. Assuming xMax and yMax represent the maximum x and y
coordinates of the virtual buffers, the call

f g_copypage(Sour ce, Dest);

is equivalent to

fg_vbcopy(0, xMax, 0, yMax, 0, yMax, Sour ce, Dest) ;
Parameters

Source is the source virtual buffer handle.

Dest is the destination virtual buffer handle.
Return value

none
Restrictions

The source and destination virtual buffers must have the same color depth and same
dimensions. If they have the same color depth but not the same dimensions, use fg_vbcopy()
instead of fg_copypage().

When using DirectX, the source or destination virtual buffers must not be locked.
See also

fg_vbcopy(), fg_vbopen()
Examples

Fishtank, ImgProc

Fastgraph 6.0 Reference Manual « 89

fg_cut()

Prototype
C/C++

C#
Delphi

VB

VB.NET

Description

void fg cut (void *Bitmap, void *Section, int xPos, int yPos,
int nWdth, int nSecWdth, int nSecHeight);

void fg.cut (ref byte Bitmap, ref byte Section, int xPos, int
yPos, int nWdth, int nSecWdth, int nSecHeight);

procedure fg cut (var Bitnmap, Section; xPos, yPos, nWdth,
nSecW dt h, nSecHei ght : integer);

Sub fg_cut (Bitmap() As Any, Section() As Any, ByVal xPos As
Long, ByVal yPos As Long, ByVal nWdth As Long, ByVal nSecWdth
As Long, ByVal nSecHei ght As Long)

Sub fg_cut (ByRef Bitmap As Byte, ByRef Section As Byte, ByVal
xPos As Integer, ByVal yPos As |Integer, ByVal nWdth As

I nteger, ByVal nSecWdth As Integer, ByVal nSecHei ght As

I nt eger)

The fg_cut() function extracts a 256-color bitmap section from a 256-color bitmap.

Parameters

Bitmap is the name of the array containing the source bitmap. This bitmap is not modified in any

way.

Section is the name of the array to receive the bitmap section. Its size must be at least
nSecWidth * nSecHeight bytes.

xPos is the x coordinate within the source bitmap that defines the left edge of the bitmap section.
It must be greater than or equal to zero, but less than nWidth.

yPos is the y coordinate within the source bitmap that defines the bottom edge of the bitmap

section. It

must be greater than or equal to zero, but less than the source bitmap height. The

bottom row of a bitmap is considered row zero.

nWidth is the source bitmap width in pixels.

nSecWidth is the bitmap section width in pixels.

nSecHeight is the bitmap section height in pixels.

Return value
none

Restrictions
none

See also

fg_cutdcb(), fg_paste()

90 « Fastgraph 6.0 Reference Manual

fg_cutdcb()

Prototype

C/C++ void fg cutdcb (void *Bitmap, void *Section, int xPos, int
yPos, int nWdth, int nSecWdth, int nSecHeight);

C# void fg.cutdcb (ref byte Bitnap, ref byte Section, int xPos,
int yPos, int nWdth, int nSecWdth, int nSecHeight);

Delphi procedure fg cutdcb (var Bitmap, Section; xPos, yPos, nWdth,
nSecW dt h, nSecHei ght : integer);

VB Sub fg_cutdchb (Bitmap() As Any, Section() As Any, ByVal xPos As
Long, ByVal yPos As Long, ByVal nWdth As Long, ByVal nSecWdth
As Long, ByVal nSecHei ght As Long)

VB.NET Sub fg cutdcb (ByRef Bitmap As Byte, ByRef Section As Byte,
ByVal xPos As Integer, ByVal yPos As |Integer, ByVal nWdth As
I nteger, ByVal nSecWdth As Integer, ByVal nSecHei ght As
I nt eger)

Description
The fg_cutdcb() function extracts a direct color bitmap section from a direct color bitmap.
Parameters

Bitmap is the name of the array containing the source bitmap. This bitmap is not modified in any
way.

Section is the name of the array to receive the bitmap section. It must be large enough to hold a
DCB of nSecWidth * nSecHeight pixels.

xPos is the x coordinate within the source bitmap that defines the left edge of the bitmap section.
It must be greater than or equal to zero, but less than nWidth.

yPos is the y coordinate within the source bitmap that defines the bottom edge of the bitmap
section. It must be greater than or equal to zero, but less than the source bitmap height. The
bottom row of a bitmap is considered row zero.

nWidth is the source bitmap width in pixels.

nSecWidth is the bitmap section width in pixels.

nSecHeight is the bitmap section height in pixels.
Return value

none
Restrictions

This function is meaningful only with direct color virtual buffers.
See also

fg_cut(), fg_pastedcb()

Fastgraph 6.0 Reference Manual « 91

fg_dash()

Prototype
C/C++ void fg dash (int x, int y, int Pattern);
C# void fg.dash (int x, int y, int Pattern);
Delphi procedure fg dash (x, y, Pattern : integer);
VB fub ;g_dash (Byval x As Long, ByVal y As Long, ByVal Pattern As
ong

VB.NET Sub fg dash (ByVal x As Integer, ByVal y As Integer, ByVal
Pattern As Integer)

Description

The fg_dash() function draws a dashed line from the graphics cursor position to an absolute
screen space position. It also makes the destination position the new graphics cursor paosition.

Parameters
x is the screen space x coordinate of the destination position.
y is the screen space y coordinate of the destination position.

Pattern represents a 16-bit cyclic dash pattern. Bits that are 1 will result in a pixel being drawn;
bits that are 0 will result in a pixel being skipped.

Return value
none

Restrictions
none

See also

fg_dashrel(), fg_dashrw(), fg_dashw(), fg_move()

92 « Fastgraph 6.0 Reference Manual

fg_dashrel()

Prototype
C/C++ void fg dashrel (int x, int y, int Pattern);
C# void fg.dashrel (int x, int y, int Pattern);
Delphi procedure fg dashrel (x, y, Pattern : integer);
VB Sub fg_dashrel (ByVal x As Long, ByVal y As Long, ByVal Pattern
As Long)

VB.NET Sub fg dashrel (ByVal x As Integer, ByVal y As |Integer, ByVal
Pattern As Integer)

Description

The fg_dashrel() function draws a dashed line from the graphics cursor position to a screen
space position relative to it. It also makes the destination position the new graphics cursor
position.

Parameters
x is the screen space x offset of the destination position.
y is the screen space y offset of the destination position.

Pattern represents a 16-bit cyclic dash pattern. Bits that are 1 will result in a pixel being drawn;
bits that are 0 will result in a pixel being skipped.

Return value
none

Restrictions
none

See also

fg_dash(), fg_dashrw(), fg_dashw(), fg_moverel()

Fastgraph 6.0 Reference Manual ¢ 93

fg_dashrw()

Prototype
C/C++ voi d fg _dashrw (double x, double y, int Pattern);
C# voi d fg.dashrw (double x, double y, int Pattern);
Delphi procedure fg dashrw (x, y : real; Pattern : integer);
VB Sub fg_dashrw (ByVal x As Double, ByVal y As Doubl e, ByVal

Pattern As Long)

VB.NET Sub fg dashrw (ByVal x As Doubl e, ByVal y As Double, ByVal
Pattern As Integer)

Description

The fg_dashrw() function draws a dashed line from the graphics cursor position to a 2D world
space position relative to it. It also makes the destination position the new graphics cursor
position.

Parameters
x is the world space x offset of the destination position.
y is the world space y offset of the destination position.

Pattern represents a 16-bit cyclic dash pattern. Bits that are 1 will result in a pixel being drawn;
bits that are 0 will result in a pixel being skipped.

Return value
none

Restrictions
none

See also

fg_dash(), fg_dashrel(), fg_dashw(), fg_moverw()

94 « Fastgraph 6.0 Reference Manual

fg_dashw()

Prototype
C/C++ voi d fg _dashw (double x, double y, int Pattern);
C# voi d fg.dashw (double x, double y, int Pattern);
Delphi procedure fg dashw (x, y : real; Pattern : integer);
VB Sub fg_dashw (ByVal x As Double, ByVal y As Doubl e,

Pattern As Long)

VB.NET Sub fg dashw (ByVal x As Double, ByVal y As Doubl e,
Pattern As Integer)

Description

The fg_dashw() function draws a dashed line from the graphics cursor position to an absolute
2D world space position. It also makes the destination position the new graphics cursor position.

Parameters
x is the world space x coordinate of the destination position.

y is the world space y coordinate of the destination position.

Pattern represents a 16-hit cyclic dash pattern. Bits that are 1 will result in a pixel being drawn;

bits that are 0 will result in a pixel being skipped.
Return value

none
Restrictions

none
See also

fg_dash(), fg_dashrel(), fg_dashrw(), fg_movew()

Fastgraph 6.0 Reference Manual ¢ 95

fg_ddapply()

Prototype
C/C++ voi d fg ddapply (int Version);
C# voi d fg.ddapply (int Version);
Delphi procedure fg ddapply (Version : integer);
VB Sub fg_ddapply (ByVal Version As Long)
VB.NET Sub fg ddapply (ByVal Version As Integer)
Description
The fg_ddapply() function activates Fastgraph's DirectX settings defined through fg_ddsetobj().
Parameters
Version is the DirectX version being used. It must be 5, 6, or 7.
Return value
none
Restrictions
This function is available only in Fastgraph's DirectX libraries.
See also
fg_ddsetobj()
Examples
SetupD3D, SetupDD

96 « Fastgraph 6.0 Reference Manual

fg_ddflip()

Prototype
C/C++ int fg ddflip (void);
C# int fg.ddflip ();
Delphi function fg ddflip : integer;
VB Function fg ddflip () As Long

VB.NET Function fg ddflip () As Integer
Description

The fg_ddflip() function moves or "flips" the DirectDraw back buffer surface to the screen. It is
meaningful only for programs that specify the FG_DX_FLIP flag through fg_ddsetup().

Parameters
none
Return value

The fg_ddflip() return value will be zero if successful. Otherwise, the return value will be a
standard error code listed in Microsoft's DirectX documentation.

Restrictions

This function is available only in Fastgraph's DirectX libraries.
See also

fg_ddflipnw(), fg_ddsetup(), fg_gdiflip()
Examples

FrameDD, TMcubeX

Fastgraph 6.0 Reference Manual ¢ 97

fg_ddflipnw()

Prototype
C/C++ int fg ddflipnw (void);
C# int fg.ddflipnw ();
Delphi function fg ddflipnw : integer;
VB Function fg_ddflipnw () As Long

VB.NET Function fg ddflipnw () As |nteger
Description

The fg_ddflipnw() function moves or "flips" the DirectDraw back buffer surface to the screen,
without waiting for the display hardware to finish drawing if it is busy. It is meaningful only for
programs that specify the FG_DX_FLIP flag through fg_ddsetup().

Parameters
none
Return value

The fg_ddflipnw() return value will be zero if successful, or the DirectDraw error
DDERR_WASSTILLDRAWING if the flip operation could not performed because the display
hardware was busy. Otherwise, the return value will be a standard error code listed in Microsoft's
DirectX documentation.

Restrictions

This function is available only in Fastgraph's DirectX libraries.
See also

fg_ddflip(), fg_ddsetup()

98 « Fastgraph 6.0 Reference Manual

fg_ddframe()

Prototype
C/C++ void fg ddframe (int State);
C# void fg.ddframe (int State);
Delphi procedure fg ddframe (State : integer);
VB Sub fg_ddfrane (ByVal State As Long)
VB.NET Sub fg ddfrane (ByVal State As |nteger)
Description

The fg_ddframe() function begins or ends a Direct3D rendering sequence. It does nothing
unless Direct3D is being used.

Parameters

State defines whether we are beginning or ending a Direct3D rendering sequence. If State is 0,
fg_ddframe() begins a rendering sequence. If State is 1, fg_ddframe() ends a rendering
sequence.

Return value
none
Restrictions
The fg_ddframe() function does nothing if Direct3D is not being used.
This function is available only in Fastgraph's DirectX libraries.
Examples
TMcubeX

Fastgraph 6.0 Reference Manual « 99

fg_ddfreedc()

Prototype
C/C++ voi d fg _ddfreedc (HDC hDC);
C# void fg.ddfreedc (IntPtr hDC);
Delphi procedure fg ddfreedc (hDC : HDC);
VB Sub fg_ddfreedc (ByVal hDC As Long)

VB.NET Sub fg ddfreedc (ByVal hDC As IntPtr)
Description

The fg_ddfreedc() function releases the device context for the active virtual buffer, and unlocks
the DirectDraw surface associated with that virtual buffer.

Parameters
hDC is the handle of the device context to release, as returned by fg_ddgetdc().
Return value
none
Restrictions
This function is available only in Fastgraph's DirectX libraries.
See also
fg_ddgetdc()

100 « Fastgraph 6.0 Reference Manual

fg_ddgetdc()

Prototype
C/C++ HDC fg_ddgetdc (void);
C# IntPtr fg.ddgetdc ();

Delphi function fg ddgetdc : HDC,
VB Function fg_ddgetdc () As Long
VB.NET Function fg _ddgetdc () As IntPtr

Description

The fg_ddgetdc() function creates a device context for the active virtual buffer, and locks the
DirectDraw surface associated with that virtual buffer.

Parameters
none
Return value
A handle to the device context.
Restrictions
This function is available only in Fastgraph's DirectX libraries.
See also
fg_ddfreedc(), fg_fontdc()

Fastgraph 6.0 Reference Manual « 101

fg_ddgetobj()

Prototype
C/C++ int fg_ddgetobj (int nCode);
C# int fg.ddgetobj (int nCode);

Delphi function fg ddgetobj (nCode : integer) : integer;

VB Function fg_ddgetobj (ByVal nCode As Long) As Long

VB.NET Function fg _ddgetobj (ByVal nCode As Integer) As Integer
Description

The fg_ddgetobj() function returns a pointer to the requested DirectX object.
Parameters

nCode specifies the DirectX object:

0 DirectDraw2, DirectDraw4, or DirectDraw?7

DirectDrawSurface2, DirectDrawSurface4, or DirectDrawSurface? for primary surface
DirectDrawClipper

DirectDrawPalette

Direct3D2, Direct3D3, or Direct3D7

Direct3DDevice2, Direct3DDevice3, or Direct3DDevice7 (if using hardware acceleration)
Direct3DDevice2, Direct3DDevice3, or Direct3DDevice7 (if using software rendering)
Direct3DViewport2 or Direct3DViewport3 (not used for DirectX 7)

DirectDrawSurface2, DirectDrawSurface4, or DirectDrawSurface? for Direct3D z-buffer

O~NOOT A WN P

Return value

A pointer to the requested DirectX object. The different versions of the objects correspond to the
version of DirectX being used. For example, fg_ddgetobj(0) returns a pointer to a DirectDraw?2
object if we are using DirectX 5 or earlier, a DirectDraw4 object for DirectX 6, and a DirectDraw7
object for DirectX 7. If the nCode parameter does not specify one of the values listed above, the
return value is zero.

Restrictions
This function is available only in Fastgraph's DirectX libraries.
The DirectDrawClipper object is meaningful only for windowed programs.
The DirectDrawPalette object is meaningful only for full screen programs.
See also
fg_ddsetobj()

102 « Fastgraph 6.0 Reference Manual

fg_ddgetversion()

Prototype
C/C++ int fg_ddgetversion (void);
C# int fg.ddgetversion ();
Delphi function fg_ddgetversion : integer;
VB Function fg_ddgetversion () As Long

VB.NET Function fg ddgetversion () As |nteger
Description

The fg_ddgetversion() function returns the DirectX version number Fastgraph is using.
Parameters

none
Return value

The DirectX version number. A return value of 5 means DirectX 5 or earlier.
Restrictions

The return value is meaningful only after calling fg_vbinit().

This function is available only in Fastgraph's DirectX libraries.
See also

fg_ddsetversion(), fg_vbinit()

Fastgraph 6.0 Reference Manual « 103

fg_ddlock()

Prototype
C/C++ int fg ddl ock (void);
C# int fg.ddlock ();
Delphi function fg ddlock : integer;
VB Function fg_ddl ock () As Long

VB.NET Function fg_ddlock () As Integer
Description

The fg_ddlock() function locks the DirectDraw surface associated with the active virtual buffer
and returns its address. The address will be valid until you unlock the surface.

Parameters
none
Return value

The address of the DirectDraw surface associated with the active virtual buffer. If no virtual buffer
is active, the return value will be zero.

Restrictions

This function is available only in Fastgraph's DirectX libraries.
See also

fg_ddunlock()

104 « Fastgraph 6.0 Reference Manual

fg_ddmemory()

Prototype
C/C++ void fg _ddnenory (int MenType);
C# voi d fg.ddnenory (int MenType);
Delphi procedure fg ddnenory (MeniType : integer);
VB Sub fg_ddrmenory (ByVal MenType As Long)
VB.NET Sub fg ddnenory (ByVal MenType As | nteger)
Description

The fg_ddmemory() function defines if fg_vballoc() creates DirectDraw surfaces in system
memory or video memory.

Parameters

MemType defines the type of memory used for DirectDraw surfaces. If MemType is zero,
fg_vballoc() will create surfaces in system memory (this is the default). If MemType is any other
value, it will create surfaces in video memory.

Return value

none
Restrictions

This function is available only in Fastgraph's DirectX libraries.
See also

fg_vballoc()

Fastgraph 6.0 Reference Manual « 105

fg_ddrestore()

Prototype
C/C++ void fg ddrestore (void);
C# void fg.ddrestore ();

Delphi procedure fg ddrestore;

VB Sub fg_ddrestore ()

VB.NET Sub fg ddrestore ()
Description

The fg_ddrestore() function restores the DirectDraw primary surface and all other DirectDraw
surfaces that reside in video memory. Such surfaces must be restored upon return from a task
switch (Alt+Tab, for example). This function restores the surface memory, but not the surface
contents.

Parameters
none
Return value
none
Restrictions
This function is available only in Fastgraph's DirectX libraries.
Examples
FrameDD, TMcubeX

106 « Fastgraph 6.0 Reference Manual

fg_ddsetblt()

Prototype
C/C++ void fg ddsetblt (int Usage);
C# void fg.ddsetblt (int Usage);

Delphi procedure fg ddsetblt (Usage : integer);

VB Sub fg_ddsetblt (ByVal Usage As Long)

VB.NET Sub fg ddsetblt (ByVal Usage As I|nteger)
Description

The fg_ddsetblt() function defines if certain Fastgraph functions use their own native code, or if
they use the DirectX BIt() or BltFast() blitting methods. This affects the fg_copypage(),
fg_erase(), fg_fillpage(), fg_vbcopy(), and fg_vbtzcopy() functions. By default, these functions
use the DirectX blitting methods.

Parameters

Usage defines the blitting method. If Usage is zero, the affected functions will use Fastgraph's
own native code; if it is any other value, they will use the DirectX blitting methods.

Return value
none
Restrictions
This function is available only in Fastgraph's DirectX libraries.

See also

fg_copypage(), fg_erase(), fg_fillpage(), fg_vbcopy(), fg_vbtzcopy()

Fastgraph 6.0 Reference Manual « 107

fg_ddsetobj()

Prototype
C/C++ voi d fg _ddsetobj (void *dxChject, int nCode);
C# voi d fg.ddsetobj (ref int dxObject, int nCode);
Delphi procedure fg ddsetobj (var dxCoject; nCode : integer);
VB Sub fg_ddsetobj (dxChject As Any, ByVal nCode As Long)
VB.NET Sub fg ddsetobj (ByRef dxObject As |Integer, ByVal nCode As
I nt eger)
Description

The fg_ddsetobj() function defines a pointer to an externally created DirectX object. Normally
you will only use this function in specialized applications, or when using Fastgraph with third party
DirectX tools.

Parameters
dxObject is a pointer to the DirectX object.
nCode specifies which DirectX object to define:

0 DirectDraw2, DirectDraw4, or DirectDraw?7

DirectDrawSurface2, DirectDrawSurface4, or DirectDrawSurface? for primary surface
DirectDrawClipper

DirectDrawPalette

Direct3D2, Direct3D3, or Direct3D7

Direct3DDevice2, Direct3DDevice3, or Direct3DDevice7 (if using hardware acceleration)
Direct3DDevice2, Direct3DDevice3, or Direct3DDevice7 (if using software rendering)
Direct3DViewport2 or Direct3DViewport3 (not used for DirectX 7)

8 DirectDrawSurface2, DirectDrawSurface4, or DirectDrawSurface? for Direct3D z-buffer

~Nooh~hwNE

The different versions of the objects correspond to the version of DirectX being used. For
example, if nCode is zero, fg_ddsetobj() expects a pointer to a DirectDraw2 object for DirectX 5
or earlier, a DirectDraw4 object for DirectX 6, and a DirectDraw7 object for DirectX 7.

Return value
none
Restrictions
This function is available only in Fastgraph's DirectX libraries.
The DirectDrawClipper object is used only in windowed programs.
The DirectDrawPalette object is used only in full screen programs.
See also
fg_ddapply(), fg_ddgetobj()
Examples
SetupD3D, SetupDD

108 ¢ Fastgraph 6.0 Reference Manual

fg_ddsetup()

Prototype
C/C++ void fg ddsetup (int nWdth, int nHeight, int nDepth, int
Fl ags) ;
C# void fg.ddsetup (int nWdth, int nHeight, int nDepth, int
Fl ags) ;
Delphi procedure fg ddsetup (nWdth, nHeight, nDepth, Flags :
i nteger);
VB Sub fg_ddsetup (ByvVal nWdth As Long, ByVal nHei ght As Long

ByVal nDepth As Long, ByVal Flags As Long)

VB.NET Sub fg ddsetup (ByVal nWdth As Integer, ByVal nHeight As
I nteger, ByVal nDepth As Integer, ByVal Flags As |nteger)

Description

The fg_ddsetup() function defines the display resolution, color depth, and other DirectX
information for full screen programs. Calling fg_ddsetup() does not actually set the requested
display mode but merely defines how fg_vbinit() will initialize DirectX.

Parameters
nWidth is the horizontal resolution in pixels.
nHeight is the vertical resolution in pixels.

nDepth is the color depth in bits per pixel. It must be 8, 16, 24, or 32. You can also specify a
nDepth of zero, which is used in hybrid programs that switch between full screen and windowed
DirectDraw. If nDepth is zero, fg_ddsetup() ignores the other three parameters.

Flags is a series of flags that specifies how Fastgraph will use DirectX, as summarized here:

Flag Meaning
FG_DX BLIT Use DirectDraw blitting
FG_DX_FLIP Use DirectDraw page flipping (required for Direct3D)

FG_DX_RENDER_FG Use Fastgraph rendering for 3D functions
FG_DX_RENDER_SW Use Direct3D software rendering if available
FG_DX_RENDER_HW Use Direct3D hardware acceleration if available
FG_DX_ZBUFFER Create a Direct3D z-buffer

FG_ DX _TCDEPTH Use specified true color bit depth only

If FG_DX_BLIT is specified, FG_DX RENDER_xx and FG_DX_ZBUFFER are ignored because
these flags are specific to Direct3D programs. FG_DX_TCDEPTH is ignored unless the nDepth
parameter is 24 or 32.

Return value
none
Restrictions

The combination of nWidth, nHeight, and nDepth parameters must define a valid DirectDraw
screen resolution and color depth.

For Direct3D programs, you must specify the FG_DX_FLIP flag, and the nDepth parameter must
be 16, 24, or 32.

This function is available only in Fastgraph's DirectX libraries.

Fastgraph 6.0 Reference Manual « 109

fg_ddsetup() (continued)

See also

fg_ddflip(), fg_ddstatus(), fg_ddusage(), fg_vbinit()
Examples

FrameDD, FullScr, TMcubeX

110 « Fastgraph 6.0 Reference Manual

fg_ddsetversion()

Prototype
C/C++ void fg ddsetversion (int MnVer, int MaxVer);
C# voi d fg.ddsetversion (int MnVer, int MaxVer);
Delphi procedure fg ddsetversion (M nVer, MaxVer : integer);
VB Sub fg_ddsetversion (ByVal M nVer As Long, ByVal MaxVer As
Long)
VB.NET Sub fg ddsetversion (ByVal M nVer As Integer, ByVal MaxVer As
I nt eger)
Description

The fg_ddsetversion() function defines the highest and lowest DirectX versions under which the
program can run. If you don't call fg_ddsetversion(), Fastgraph will use the highest supported
version of DirectX available. To require a specific DirectX version, specify that version for both
function parameters.

Parameters

MinVer is the lowest DirectX version under which the program can run. It must be between 2 and
7 for DirectDraw programs, or between 5 and 7 for Direct3D programs.

MaxVer is the highest DirectX version under which the program can run. It must be greater than
or equal to MinVer.

Return value

none
Restrictions

If used, this function must be called before fg_vbinit().

This function is available only in Fastgraph's DirectX libraries.
See also

fg_ddgetversion(), fg_ddsetup(), fg_vbinit()

Fastgraph 6.0 Reference Manual » 111

fg_ddstatus()

Prototype
C/C++ int fg ddstatus (void);
C# int fg.ddstatus ();

Delphi function fg ddstatus : integer;

VB Function fg_ddstatus () As Long

VB.NET Function fg ddstatus () As |nteger
Description

The fg_ddstatus() function returns error code resulting from the most recent DirectDraw or
Direct3D operation.

Parameters
none
Return value

If no DirectDraw or Direct3D error occurred, the return value will be zero. Otherwise, the return
value will be one of the error codes listed in Microsoft's DirectX documentation.

Restrictions
This function is available only in Fastgraph's DirectX libraries.
See also

fg_ddsetup(), fg_ddusage(), fg_vbinit()

112 « Fastgraph 6.0 Reference Manual

fg_ddunlock()

Prototype
C/C++ voi d fg_ddunl ock (void);
C# voi d fg.ddunl ock ();
Delphi procedure fg_ddunl ock;
VB Sub fg_ddunl ock ()

VB.NET Sub fg_ddunl ock ()
Description

The fg_ddunlock() function unlocks the DirectDraw surface associated with the active virtual
buffer.

Parameters
none
Return value
none
Restrictions
This function is available only in Fastgraph's DirectX libraries.
See also
fg_ddlock()

Fastgraph 6.0 Reference Manual » 113

fg_ddusage()

Prototype
C/C++ int fg_ddusage (void);
C# int fg.ddusage ();
Delphi procedure fg ddusage;
VB Function fg_ddusage () As Long
VB.NET Function fg ddusage () As Integer
Description
The fg_ddusage() function returns a value indicating how Fastgraph is using DirectX.
Parameters
none
Return value
- 1 = DirectX not available
0 = Using DirectX with Fastgraph's 3D rendering
1 = Using DirectX with Direct3D software rendering
2 = Using DirectX with Direct3D hardware acceleration
Restrictions
This function is meaningful only after calling fg_vbinit().
This function is available only in Fastgraph's DirectX libraries.
See also
fg_ddsetup(), fg_ddstatus(), fg_vbinit()

114 « Fastgraph 6.0 Reference Manual

fg_defcolor()

Prototype
C/C++ void fg defcolor (int nlndex, int nValue);
C# voi d fg.defcolor (int nlndex, int nValue);
Delphi procedure fg defcol or (nlndex, nValue : integer);
VB Sub fg_defcol or (ByVal nlndex As Long, ByVal nVal ue As Long)
VB.NET Sub fg defcolor (ByVal nlndex As Integer, ByVal nVal ue As
I nt eger)
Description

The fg_defcolor() legacy function assigns a color value to a virtual color index.
Parameters

nindex is the virtual color index to define, between 0 and 255.

nValue is the color value to assign to the specified color index, between 0 and 255.
Return value

none
Restrictions

none

Fastgraph 6.0 Reference Manual « 115

fg_defpal()

Prototype
C/C++ HPALETTE f g_defpal (void);
C# int fg.defpal ();
Delphi function fg defpal : HPALETTE;
VB Function fg_defpal () As Long

VB.NET Function fg defpal () As Integer
Description

The fg_defpal() function creates a logical palette containing Fastgraph's default colors. It often
appears in the WM_CREATE message handler. See Chapter 3 of the Fastgraph 6.0 User's
Guide for a list of colors in the default logical palette.

Parameters
none
Return value

A Windows handle to the new logical palette. If an error occurs in creating the logical palette,
fg_defpal() returns zero.

Restrictions

none
See also

fg_getdacs(), fg_getrgb(), fg_logpal(), fg_realize(), fg_setdacs(), fg_setrgh()
Examples

Nearly all the example programs use this function.

116 Fastgraph 6.0 Reference Manual

fg_dispfile()

Prototype
CIC++
C#
Delphi

VB

VB.NET

Description

void fg dispfile (char *FileName, int nWdth, int Format);
void fg.dispfile (string FileNane, int nWdth, int Format);

procedure fg dispfile (FileNane : string; nWdth, Fornat
i nteger);

Sub fg_dispfile (ByVal FileNane As String, ByVal nWdth As
Long, ByVal Format As Long)

Sub fg_dispfile (ByVal FileNane As String, ByVal nWdth As
I nteger, ByVal Fornmat As |nteger)

The fg_dispfile() legacy function displays an image from a standard or packed pixel run file. The
image will be positioned so that its lower left corner is at the graphics cursor position.

Parameters

FileName is the name of the PPR or SPR file. A device and path name may be included as part
of the file name. The file name must be terminated by a null character (that is, a zero byte).

nWidth is the image width in pixels. It must be greater than zero.

Format specifies the image format. The value of Format must be 0 if the image is in standard
pixel run format, and 1 if the image is in packed pixel run format.

Return value

none

Restrictions

none

Replaced by

BMP and PCX display functions

Fastgraph 6.0 Reference Manual « 117

fg_display()

Prototype
CIC++
C#
Delphi
VB

VB.NET

Description

void fg display (void *Bitmap, int nRuns, int nWdth);
void fg.display (ref byte Bitmap, int nRuns, int nWdth);
procedure fg display (var Bitmap; nRuns, nWdth : integer);

Sub fg_display (Bitmap() As Any, ByVal nRuns As Long, ByVal
nWdth As Long)

Sub fg_display (ByRef Bitmap As Byte, ByVal nRuns As Integer,
ByVal nWdth As Integer)

The fg_display() legacy function displays an image stored in Fastgraph's standard pixel run
format, where the image resides in an array. The image will be positioned so that its lower left
corner is at the graphics cursor position.

Parameters

Bitmap is the name of the array containing the pixel run map. The pixel run map is a sequence of
(color,count) pairs. Each "color" element is a value between 0 and 255 specifying the color for
that pixel run. Each "count" element is a value between 0 and 255 specifying the length in pixels
of that pixel run.

nRuns is the number of pixel runs to display from the pixel run map. It is normally one-half the
size of the Bitmap array.

nWidth is the image width in pixels. It must be greater than zero.

Return value

none

Restrictions

none

Replaced by

256-color bitmap functions

118 « Fastgraph 6.0 Reference Manual

fg_displayp()

Prototype
C/C++ void fg displayp (void *Bitmap, int nRuns, int nWdth);
C# void fg.displayp (ref byte Bitmap, int nRuns, int nWdth);
Delphi procedure fg displayp (var Bitmap; nRuns, nWdth : integer);

VB Sub fg_displayp (Bitmap() As Any, ByVal nRuns As Long, ByVal
nWdth As Long)

VB.NET Sub fg displayp (ByRef Bitmap As Byte, ByVal nRuns As |nteger,
ByVal nWdth As Integer)

Description

The fg_displayp() legacy function displays an image stored in Fastgraph's packed pixel run
format, where the image resides in an array. The image will be positioned so that its lower left
corner is at the graphics cursor position.

Parameters

Bitmap is the name of the array containing the pixel run map. The pixel run map is a sequence of
(color,count) pairs. Each "color" element is a value between 0 and 15 specifying the color for that
pixel run. Each "count" element is a value between 0 and 255 specifying the length in pixels of
that pixel run.

nRuns is the number of pixel runs to display from the pixel run map. It is normally two-thirds the
size of the Bitmap array.

nWidth is the image width in pixels. It must be greater than zero.
Return value

none
Restrictions

none
Replaced by

256-color bitmap functions

Fastgraph 6.0 Reference Manual « 119

fg_draw()

Prototype
C/C++ void fg draw (int x, int y);
C# void fg.draw (int x, int y);
Delphi procedure fg draw (x, y : integer);
VB Sub fg_draw (ByVal x As Long, ByVal y As Long)
VB.NET Sub fg draw (ByVal x As Integer, ByVal y As Integer)
Description

The fg_draw() function draws a solid line from the graphics cursor position to an absolute screen
space position. It also makes the destination position the new graphics cursor position.

Parameters
x is the screen space x coordinate of the destination position.
y is the screen space y coordinate of the destination position.
Return value
none
Restrictions
none
See also
fg_3Dline(), fg_drawrel(), fg_draww(), fg_drawx(), fg_move()
Examples

Graphics, Scroller

120 « Fastgraph 6.0 Reference Manual

fg_drawdcb()

Prototype
CIC++
C#
Delphi
VB

VB.NET

Description

void fg drawdchb (void *Bitmap, int nWdth, int nHeight);
void fg.drawdchb (ref byte Bitmap, int nWdth, int nHeight);
procedure fg drawdcb (var Bitrmap; nWdth, nHeight : integer);

Sub fg_drawdcb (Bitmap() As Any, ByVal nWdth As Long, ByVal
nHei ght As Long)

Sub fg_drawdcb (ByRef Bitmap As Byte, ByVal nWdth As Integer,
ByVal nHei ght As | nteger)

The fg_drawdcb() function displays a direct color bitmap, without clipping. The bitmap will be
positioned so that its lower left corner is at the graphics cursor position. Color 0 pixels will be
considered transparent.

For high color virtual buffers, each pixel in the bitmap is a 16-bit (two byte) encoded RGB value.
For true color virtual buffers, each pixel is a 24-bit (three byte) RGB value, stored blue byte first,
then green byte, then red byte. Refer to Chapter 8 of the Fastgraph 6.0 User's Guide for
complete information about direct color bitmaps.

Parameters

Bitmap is the name of the array containing the bitmap.

nWidth is the bitmap width in pixels.

nHeight is the bitmap height in pixels.

Return value

none

Restrictions

This function is meaningful only with direct color virtual buffers.

See also

fg_clipdch(), fg_drawmap(), fg_drwimage(), fg_flipdcb(), fg_getdcb(), fg_invdcb(), fg_putdch(),
fg_revdch()

Examples
Dch

Fastgraph 6.0 Reference Manual « 121

fg_drawmap()

Prototype
C/C++ void fg drawmap (void *Bitmap, int nWdth, int nHeight);
C# void fg.drawmap (ref byte Bitmap, int nWdth, int nHeight);
Delphi procedure fg drawrap (var Bitrmap; nWdth, nHeight : integer);

VB Sub fg_drawmap (Bitmap() As Any, ByVal nWdth As Long, ByVal
nHei ght As Long)

VB.NET Sub fg drawmap (ByRef Bitnap As Byte, ByVal nWdth As |nteger,
ByVal nHei ght As | nteger)

Description

The fg_drawmap() function displays a monochrome bitmap. The bitmap will be positioned so
that its lower left corner is at the graphics cursor position. Refer to Chapter 8 of the Fastgraph 6.0
User's Guide for complete information about monochrome bitmaps.

Parameters

Bitmap is the name of the array containing the bitmap. Each byte of Bitmap represents eight
pixels. Bits that are set (1) result in the corresponding pixel being displayed in the current color.
Bits that are reset (0) leave the corresponding pixel unchanged.

nWidth is the bitmap width in bytes.
nHeight is the bitmap height in bytes.
Return value
none
Restrictions
none
See also
fg_clipmap(), fg_drawdcb(), fg_drwimage(), fg_getmap(), fg_invert()
Examples

Monomap

122 « Fastgraph 6.0 Reference Manual

fg_drawmask()

Prototype
C/C++ void fg drawnask (void *Bitmap, int nRuns, int nWdth);
C# void fg.drawnask (ref byte Bitmap, int nRuns, int nWdth);
Delphi procedure fg drawrask (var Bitmap; nRuns, nWdth : integer);

VB Sub fg_drawrask (Bitmap() As Any, ByVal nRuns As Long, ByVal
nWdth As Long)

VB.NET Sub fg drawrask (ByRef Bitmap As Byte, ByVal nRuns As |nteger,
ByVal nWdth As Integer)

Description

The fg_drawmask() legacy function displays a masking map. The masking map will be
positioned so that its lower left corner is at the graphics cursor position.

Parameters

Bitmap is the name of the array containing the masking map. The masking map is a series of
alternating "protect” and "zero" pixel runs. The "protect" runs leave the corresponding virtual
buffer pixels unchanged, while the "zero" runs set them to color zero. The length of each run
must be between 0 and 255.

nRuns is the number of pixel runs in the masking map.
nWidth is the masking map width in pixels.
Return value
none
Restrictions
none
Replaced by

256-color bitmap functions

Fastgraph 6.0 Reference Manual « 123

fg_drawrel()

Prototype
C/C++ void fg drawel (int x, int y);
C# void fg.drawel (int x, int y);
Delphi procedure fg drawrel (x, y : integer);
VB Sub fg_drawel (ByVal x As Long, ByVal y As Long)
VB.NET Sub fg drawrel (ByVal x As Integer, ByVal y As |nteger)
Description

The fg_drawrel() function draws a solid line from the graphics cursor position to a screen space
position relative to it. It also makes the destination position the new graphics cursor position.

Parameters
x is the screen space x offset of the destination position.
y is the screen space y offset of the destination position.
Return value
none
Restrictions
none
See also

fg_draw(), fg_drawrelx(), fg_drawrw(), fg_moverel()

124 « Fastgraph 6.0 Reference Manual

fg_drawrelx()

Prototype
C/C++ void fg drawelx (int x, int y);
C# void fg.drawelx (int x, int y);
Delphi procedure fg drawrelx (x, y : integer);
VB Sub fg_drawel x (ByVal x As Long, ByVal y As Long)

VB.NET Sub fg drawrelx (ByVal x As Integer, ByVal y As Integer)
Description

The fg_drawrelx() function draws a solid line in "exclusive or" mode from the graphics cursor
position to a screen space position relative to it. The destination position becomes the new
graphics cursor position.

Parameters
x is the screen space x offset of the destination position.
y is the screen space y offset of the destination position.
Return value
none
Restrictions
none
See also

fg_drawrel(), fg_drawrxw(), fg_drawx(), fg_moverel()

Fastgraph 6.0 Reference Manual « 125

fg_drawrw()

Prototype
C/C++ void fg draww (doubl e x, double y);
C# void fg.draww (doubl e x, double y);
Delphi procedure fg drawmrw (x, y : real);
VB Sub fg_draww (ByVal x As Double, ByVal y As Doubl e)
VB.NET Sub fg drawrw (ByVal x As Double, ByVal y As Doubl e)
Description

The fg_drawrw() function draws a solid line from the graphics cursor position to a 2D world
space position relative to it. It also makes the destination position the new graphics cursor
position.

Parameters
x is the world space x offset of the destination position.
y is the world space y offset of the destination position.
Return value
none
Restrictions
none
See also

fg_drawrel(), fg_drawrxw(), fg_draww(), fg_moverw()

126 Fastgraph 6.0 Reference Manual

fg_drawrxw()

Prototype
C/C++ voi d fg_draw xw (doubl e x, double y);
C# voi d fg.draw xw (doubl e x, double y);
Delphi procedure fg drawrxw (x, y : real);
VB Sub fg_draw xw (ByVal x As Doubl e, ByVal y As Doubl e)
VB.NET Sub fg drawrxw (ByVal x As Double, ByVal y As Doubl e)
Description

The fg_drawrxw() function draws a solid line in "exclusive or" mode from the graphics cursor
position to a 2D world space position relative to it. It also makes the destination position the new
graphics cursor position.

Parameters
x is the world space x offset of the destination position.
y is the world space y offset of the destination position.
Return value
none
Restrictions
none
See also

fg_drawrelx(), fg_drawrw(), fg_drawxw(), fg_moverw()

Fastgraph 6.0 Reference Manual « 127

fg_draww()

Prototype
C/C++ void fg draww (doubl e x, double y);
C# voi d fg.draww (doubl e x, double y);
Delphi procedure fg draww (x, y : real);
VB Sub fg_draww (ByVal x As Double, ByVal y As Doubl e)
VB.NET Sub fg draww (ByVal x As Double, ByVal y As Doubl e)
Description

The fg_draww() function draws a solid line from the graphics cursor position to an absolute 2D
world space position. It also makes the destination position the new graphics cursor position.

Parameters
x is the world space x coordinate of the destination position.
y is the world space y coordinate of the destination position.
Return value
none
Restrictions
none
See also
fg_draw(), fg_drawrw(), fg_drawxw(), fg_movew()
Examples
SWchars

128 « Fastgraph 6.0 Reference Manual

fg_drawx()

Prototype
C/C++ void fg drawx (int x, int y);
C# void fg.drawx (int x, int y);
Delphi procedure fg drawx (x, y : integer);
VB Sub fg_drawx (ByVal x As Long, ByVal y As Long)
VB.NET Sub fg drawx (ByVal x As Integer, ByVal y As Integer)
Description

The fg_drawx() function draws a solid line in "exclusive or" mode from the graphics cursor
position to an absolute screen space position. It also makes the destination position the new
graphics cursor position.

Parameters
x is the screen space x coordinate of the destination position.
y is the screen space y coordinate of the destination position.
Return value
none
Restrictions
none
See also

fg_draw(), fg_drawrelx(), fg_drawxw(), fg_move()

Fastgraph 6.0 Reference Manual « 129

fg_drawxw()

Prototype
C/C++ voi d fg _drawxw (doubl e x, double y);
C# voi d fg.drawxw (doubl e x, double y);
Delphi procedure fg drawxw (x, y : real);
VB Sub fg_drawxw (ByVal x As Double, ByVal y As Doubl e)
VB.NET Sub fg drawxw (ByVal x As Double, ByVal y As Doubl e)
Description

The fg_drawxw() function draws a solid line in "exclusive or" mode from the graphics cursor
position to an absolute 2D world space position. It also makes the destination position the new
graphics cursor position.

Parameters
x is the world space x coordinate of the destination position.
y is the world space y coordinate of the destination position.
Return value
none
Restrictions
none
See also

fg_drawrxw(), fg_draww(), fg_drawx(), fg_movew()

130 « Fastgraph 6.0 Reference Manual

fg_drawz()

Prototype

C/C++ void fg drawz (int x, int y, double zStart, double zEnd);

C# void fg.drawz (int x, int y, double zStart, double zEnd);

Delphi procedure fg drawz (x, y : integer; zStart, zEnd : double);

VB Sub fg_drawz (Byval x As Long, ByVal y As Long, ByVal
Doubl e, ByVal zEnd As Doubl e)

VB.NET Sub fg drawz (ByVal x As Integer, ByVal y As Integer,
zStart As Double, ByVal zEnd As Doubl e)

Description

zStart As

The fg_drawz() function draws a projected z-buffered line from the graphics cursor position to an
absolute screen space position, with 2D clipping. This function is called internally by Fastgraph's

3D functions and is not usually called directly by applications.
Parameters
x is the screen space x coordinate of the destination position.
y is the screen space y coordinate of the destination position.
zStart is the 3D world space z coordinate at the graphics cursor position.
zEnd is the 3D world space z coordinate at the destination position.
Return value
none
Restrictions
none
See also
fg_3Dline(), fg_3Drenderstate()

Fastgraph 6.0 Reference Manual « 131

fg_drect()

Prototype

C/C++ void fg drect (int xMn, int xMax, int yMn, int yMax, void
*Matri x) ;

C# void fg.drect (int xMn, int xMax, int yMn, int yMax, ref byte
Matri x) ;

Delphi procedure fg drect (xMn, xMax, yMn, yMax : integer; var
Matri x) ;

VB Sub fg_drect (ByvVal xMn As Long, ByVal xMax As Long, ByVal

yMn As Long, ByVal yMax As Long, Matrix() As Any)

VB.NET Sub fg drect (ByVal xMn As Integer, ByVal xMax As | nteger,
ByVal yMn As Integer, ByVal yMax As |Integer, ByRef Matrix As
Byt e)

Description

The fg_drect() function draws a dithered rectangle in screen space, without clipping.
Parameters

XMin is the screen space x coordinate of the rectangle's left edge.

XxMax is the screen space x coordinate of the rectangle's right edge. It must be greater than or
equal to the value of xMin.

yMin is the screen space y coordinate of the rectangle's top edge.

yMax is the screen space y coordinate of the rectangle's bottom edge. It must be greater than or
equal to the value of yMin.

Matrix is an eight-byte array that defines the 4x2 dithering matrix. See Chapter 5 of the Fastgraph
6.0 User's Guide for more information about the dithering matrix.

Return value
none
Restrictions
none
See also
fg_drectw(), fg_rect()

132 « Fastgraph 6.0 Reference Manual

fg_drectw()

Prototype

C/C++ void fg drectw (double xM n, double xMax, double yM n,
yMax, void *Matrix);

C# void fg.drectw (double xM n, double xMax, double yM n,
yMax, ref byte Matrix);

Delphi procedure fg drectw (xMn, xMax, yMn, yMax : real; var
Matri x) ;

VB Sub fg_drectw (ByVal xMn As Double, ByVal xMax As Doubl e,
ByVal yMn As Double, ByVal yMax As Double, Matrix() As Any)

VB.NET Sub fg drectw (ByVal xM n As Doubl e, ByVal xMax As Doubl e,
ByVal yMn As Double, ByVal yMax As Doubl e, ByRef Matrix As

Byt e)

Description

The fg_drectw() function draws a dithered rectangle in 2D world space, without clipping.

Parameters

XMin is the world space x coordinate of the rectangle's left edge.

xMax is the world space x coordinate of the rectangle's right edge. It must be greater than or

equal to the value of xMin.

yMin is the world space y coordinate of the rectangle's bottom edge.

yMax is the world space y coordinate of the rectangle's top edge. It must be greater than or equal

to the value of yMin.

Matrix is an eight-byte array that defines the 4x2 dithering matrix. See Chapter 5 of the Fastgraph

6.0 User's Guide for more information about the dithering matrix.
Return value

none
Restrictions

none
See also

fg_drect(), fg_rectw()

Fastgraph 6.0 Reference Manual « 133

fg_drwimage()

Prototype
C/C++ void fg drwinage (void *Bitmap, int nWdth, int nHeight);
C# void fg.drwinage (ref byte Bitmap, int nWdth, int nHeight);
Delphi procedure fg drwi nage (var Bitmap; nWdth, nHeight : integer);

VB Sub fg_drwi nmage (Bitmap() As Any, ByVal nWdth As Long, ByVal
nHei ght As Long)

VB.NET Sub fg drwi nage (ByRef Bitmap As Byte, ByVal nWdth As Integer,
ByVal nHei ght As | nteger)

Description

The fg_drwimage() function displays a 256-color bitmap, without clipping. The bitmap will be
positioned so that its lower left corner is at the graphics cursor position. Refer to Chapter 8 of the
Fastgraph 6.0 User's Guide for complete information about 256-color bitmaps.

Parameters
Bitmap is the name of the array containing the bitmap.
nWidth is the bitmap width in pixels.
nHeight is the bitmap height in pixels.
Return value
none
Restrictions
none
See also

fg_clpimage(), fg_drawdcb(), fg_drawmap(), fg_flpimage(), fg_getimage(), fg_invert(),
fg_putimage(), fg_revimage()

Examples

Bitmap, Rotate, Scale

134 « Fastgraph 6.0 Reference Manual

fg_ellipse()

Prototype
C/C++ void fg ellipse (int Horiz, int Vert);
C# void fg.ellipse (int Horiz, int Vert);

Delphi procedure fg ellipse (Horiz, Vert : integer);

VB Sub fg_ellipse (ByVal Horiz As Long, ByVal Vert As Long)

VB.NET Sub fg ellipse (ByVal Horiz As Integer, ByVal Vert As |nteger)
Description

The fg_ellipse() function draws an unfilled ellipse in screen space. The ellipse is centered at the
current graphics cursor position, and its size is determined by the specified lengths of its semi-
axes.

Parameters

Horiz is the length of the ellipse's horizontal semi-axis (the absolute screen space distance from
the center of the ellipse to its horizontal extremity).

Vert is the length of the ellipse's vertical semi-axis (the absolute screen space distance from the
center of the ellipse to its vertical extremity).

Return value
none
Restrictions
none
See also
fg_arc(), fg_circle(), fg_ellipsef(), fg_ellipsew()
Examples

Graphics

Fastgraph 6.0 Reference Manual « 135

fg_ellipsef()

Prototype
C/C++ void fg ellipsef (int Horiz, int Vert);
C# void fg.ellipsef (int Horiz, int Vert);

Delphi procedure fg ellipsef (Horiz, Vert : integer);

VB Sub fg_ellipsef (ByVal Horiz As Long, ByVal Vert As Long)

VB.NET Sub fg ellipsef (ByVal Horiz As Integer, ByVal Vert As |nteger)
Description

The fg_ellipsef() function draws a filled ellipse in screen space. The ellipse is centered at the
current graphics cursor position, and its size is determined by the specified lengths of its semi-
axes. The ellipse is filled with pixels of the current color.

Parameters

Horiz is the length of the ellipse's horizontal semi-axis (the absolute screen space distance from
the center of the ellipse to its horizontal extremity).

Vert is the length of the ellipse's vertical semi-axis (the absolute screen space distance from the
center of the ellipse to its vertical extremity).

Return value
none
Restrictions
none
See also
fg_circlef(), fg_ellipse(), fg_ellipsfw()
Examples

Rainbow

136 ¢ Fastgraph 6.0 Reference Manual

fg_ellipsew()

Prototype
C/C++ void fg ellipsew (double Horiz, double Vert);
C# void fg.ellipsew (double Horiz, double Vert);
Delphi procedure fg ellipsew (Horiz, Vert : real);
VB Sub fg_ellipsew (ByVal Horiz As Double, ByVal Vert As Doubl e)
VB.NET Sub fg ellipsew (ByVal Horiz As Double, ByVal Vert As Doubl e)
Description

The fg_ellipsew() function draws an unfilled ellipse in 2D world space. The ellipse is centered at
the current graphics cursor position, and its size is determined by the specified lengths of its
semi-axes.

Parameters

Horiz defines the horizontal semi-axis of the ellipse (the absolute world space distance from the
center of the ellipse to its horizontal extremity).

Vert defines the vertical semi-axis of the ellipse (the absolute world space distance from the
center of the ellipse to its vertical extremity).

Return value
none

Restrictions
none

See also

fg_arcw(), fg_circlew(), fg_ellipse(), fg_ellipsfw()

Fastgraph 6.0 Reference Manual « 137

fg_ellipsfw()

Prototype
C/C++ void fg ellipsfw (double Horiz, double Vert);
C# void fg.ellipsfw (double Horiz, double Vert);

Delphi procedure fg ellipsfw (Horiz, Vert : real);

VB Sub fg_ellipsfw (ByVal Horiz As Double, ByVal Vert As Doubl e)

VB.NET Sub fg ellipsfw (ByVal Horiz As Double, ByVal Vert As Doubl e)
Description

The fg_ellipsfw() function draws a filled ellipse in 2D world space. The ellipse is centered at the
current graphics cursor position, and its size is determined by the specified lengths of its semi-
axes. The ellipse is filled with pixels of the current color.

Parameters

Horiz defines the horizontal semi-axis of the ellipse (the absolute world space distance from the
center of the ellipse to its horizontal extremity).

Vert defines the vertical semi-axis of the ellipse (the absolute world space distance from the
center of the ellipse to its vertical extremity).

Return value
none

Restrictions
none

See also

fg_circlefw(), fg_ellipsew()

138 « Fastgraph 6.0 Reference Manual

fg_erase()

Prototype
C/C++ void fg_erase (void);
C# void fg.erase ();
Delphi procedure fg erase;
VB Sub fg_erase ()
VB.NET Sub fg erase ()
Description
The fg_erase() function fills the active virtual buffer with color 0 pixels.
Parameters
none
Return value
none
Restrictions
When using DirectX, the active virtual buffer must not be locked.
See also
fg_fillpage()
Examples
CBdemo, Fishtank, VBdemo

Fastgraph 6.0 Reference Manual « 139

fg_fillpage()
Prototype
C/C++ void fg fill page (void);
C# void fg.fillpage ();
Delphi procedure fg fill page;
VB Sub fg_fillpage ()
VB.NET Sub fg fill page ()
Description
The fg_fillpage() function fills the active virtual buffer with pixels of the current color.
Parameters
none
Return value
none
Restrictions
When using DirectX, the active virtual buffer must not be locked.
See also
fg_erase(), fg_setcolor(), fg_setcolorrgb()
Examples

Nearly all the example programs use this function.

140 « Fastgraph 6.0 Reference Manual

fg_findrgb()

Prototype
C/C++ int fg findrgb (int Red, int Green, int Blue);
C# int fg.findrgb (int Red, int Green, int Blue);

Delphi function fg findrgb (Red, Green, Blue : integer) : integer;

VB Function fg _findrgb (ByVal Red As Long, ByVal G een As Long,
ByVal Blue As Long) As Long

VB.NET Function fg findrgb (ByVal Red As Integer, ByVal Green As
Integer, ByVal Blue As Integer) As Integer

Description

The fg_findrgb() legacy function finds the color closest to the specified color in the active logical
palette.

Parameters

Red, Green, and Blue respectively define the red, green, and blue components of the target
color.

Return value

The logical palette index of the closest matching color, between 0 and 255.
Restrictions

Before calling fg_findrgb(), a logical palette must be defined and realized.

Replaced by
fg_maprgb()

Fastgraph 6.0 Reference Manual « 141

fg_fixdiv()

Prototype
C/C++ long fg fixdiv (long nl, long n2);
C# int fg.fixdiv (int nl, int n2);
Delphi function fg fixdiv (nl, n2 : longint) : |ongint;
VB Function fg fixdiv (ByvVal nl As Long, ByVal n2 As Long) As Long

VB.NET Function fg fixdiv (ByVal nl As Integer, ByVal n2 As Integer)

As | nt eger

Description

The fg_fixdiv() legacy function returns the fixed point quotient of two fixed point numbers.

Parameters
nl is the fixed point dividend (humerator).
n2 is the fixed point divisor (denominator).
Return value
The fixed point quotient of n1/n2.
Restrictions
The integral portion of the divisor must not be zero.
Replaced by

Floating point 3D geometry system

142 « Fastgraph 6.0 Reference Manual

fg_fixed()

Prototype
C/C++ long fg_fixed (double n);
C# int fg.Fixed (double n);
Delphi function fg fixed (n : real) : longint;
VB Function fg_fixed (ByVal n As Double) As Long

VB.NET Function fg fixed (ByVal n As Double) As Integer
Description
The fg_fixed() legacy function translates a floating point quantity to its fixed point equivalent.
Parameters
n is the floating point value to translate.
Return value
The fixed point equivalent of the specified floating point value.
Restrictions
none
Replaced by

Floating point 3D geometry system

Fastgraph 6.0 Reference Manual « 143

fg_fixmul()

Prototype
C/C++ long fg_ fixmul (long nl, long n2);
C# int fg.fixmul (int nl, int n2);
Delphi function fg fixmul (nl, n2 : longint) : l|ongint;
VB Function fg_fixmul (ByVal nl As Long, ByVal n2 As Long) As Long

VB.NET Function fg fixmul (ByVal nl As Integer, ByVal n2 As Integer)
As | nt eger

Description
The fg_fixmul() legacy function returns the fixed point product of two fixed point numbers.
Parameters
nl and n2 are the fixed point numbers to multiply.
Return value
The fixed point product of n1*n2.
Restrictions
none
Replaced by
Floating point 3D geometry system

144 « Fastgraph 6.0 Reference Manual

fg_fixtrig()

Prototype
C/C++ void fg fixtrig (int Angle, long *Cosine, long *Sine);
C# void fg.fixtrig (int Angle, out int Cosine, out int Sine);
Delphi procedure fg fixtrig (Angle: integer; var Cosine, Sine :
| ongint);
VB fub ;g_fi xtrig (ByVal Angle As Long, Cosine As Long, Sine As
ong

VB.NET Sub fg fixtrig (ByVal Angle As |Integer, ByRef Cosine As
I nteger, ByRef Sine As |nteger)

Description

The fg_fixtrig() legacy function returns the fixed point cosine and fixed point sine of a given

angle.

Parameters

Angle is the desired angle, expressed in tenths of degrees counterclockwise from the positive x

axis. For example, the value 900 represents 90 degrees.
Cosine receives the fixed point cosine of the angle.
Sine receives the fixed point sine of the angle.
Return value
none
Restrictions
none
Replaced by

Floating point 3D geometry system

Fastgraph 6.0 Reference Manual « 145

fg_flicdone()

Prototype
C/C++ void fg flicdone (void *Context);
C# void fg.flicdone (ref byte Context);
Delphi procedure fg flicdone (var Context);
VB Sub fg_flicdone (Context() As Any)
VB.NET Sub fg flicdone (ByRef Context As Byte)
Description
The fg_flicdone() function closes the flic file associated with the specified context descriptor.
Parameters
Context is the name of a 16-byte buffer containing the flic file context descriptor.
Return value
none
Restrictions
none
See also
fg_flicopen()
Examples

AVimake, Image

146 Fastgraph 6.0 Reference Manual

fg_flichead()

Prototype
CIC++
C#
Delphi
VB

VB.NET

Description

int fg flichead (char *Fil eNane, void *Header);
int fg.flichead (string FileNane, ref byte Header);
function fg flichead (FileNane : string; var Header) : integer;

Function fg flichead (ByVal FileNane As String, Header() As
Any) As Long

Function fg flichead (ByVal FileNane As String, ByRef Header As
Byte) As Integer

The fg_flichead() function reads an FLI or FLC file header into a 128-byte buffer. Refer to
Appendix E of the Fastgraph 6.0 User's Guide for details about the FLI/FLC header.

Parameters

FileName is the name of the FLI/FLC file, terminated by a zero byte.

Header is the name of the buffer to receive the FLI/FLC file header. Its size must be at least 128

bytes.

Return value

0 = Success

- 1 = The specified file does not exist

- 2 = The specified file is not an FLI or FLC file

Restrictions

none

See also

fg_flicplay(), fg_flicsize(), fg_showflic()

Examples

AVImake, Image

Fastgraph 6.0 Reference Manual « 147

fg_flicopen()

Prototype
C/C++ int fg flicopen (char *FileNanme, void *Context);
C# int fg.flicopen (string FileNane, ref byte Context);
Delphi function fg flicopen (FileNane : string; var Context)
i nt eger;
VB Function fg flicopen (ByVal FileNane As String, Context() As
Any) As Long

VB.NET Function fg flicopen (ByVal FileNane As String, ByRef Context

As Byte) As Integer

Description

The fg_flicopen() function opens an FLI or FLC file (collectively called flic files) for subsequent
processing by Fastgraph's other low-level flic file support functions. If successful, the file pointer

will be positioned at the beginning of the first frame.

Parameters

FileName is the name of the flic file. A device and path name may be included as part of the file

name. The file name must be terminated by a zero byte.

Context is the name of a 16-byte buffer that will receive the flic file context descriptor. The

descriptor values will only be meaningful if the return value is zero.

Return value
0 = FLI/FLC file opened successfully

- 1 = The specified file does not exist

- 2 = The specified file is not an FLI or FLC file
Restrictions

none
See also

fg_flicdone(), fg_flicplay(), fg_flicskip(), fg_showflic()
Examples

AVimake, Image

148 « Fastgraph 6.0 Reference Manual

fg_flicplay()

Prototype
C/C++ int fg flicplay (void *Context, int nFranes, int Flags);
C# int fg.flicplay (ref byte Context, int nFranes, int Flags);
Delphi function fg_flicplay (var Context; nFrames, Flags : integer)
i nt eger;
VB Function fg flicplay (Context() As Any, ByVal nFranes As Long,

ByVal Flags As Long) As Long

VB.NET Function fg flicplay (ByRef Context As Byte, ByVal nFranes As
Integer, ByVal Flags As Integer) As Integer

Description

The fg_flicplay() function plays the next one or more individual frames in a flic file that was
previously opened with fg_flicopen().

Parameters
Context is the name of a 16-byte buffer containing the flic file context descriptor.
nFrames is the number of frames to play from the flic file, starting from the current file position.

Flags is a series of flags that controls how the frames are played. Refer to the description of
fg_showflic() for the meanings of the flags.

Return value

The number of frames played. This value may be less than nFrames if the end-of-file is reached
before playing the requested number of frames.

Restrictions

none
See also

fg_flicopen(), fg_flicskip(), fg_showflic()
Examples

AVimake, Image

Fastgraph 6.0 Reference Manual « 149

fg_flicsize()
Prototype
C/C++ void fg flicsize (void *Header, int *nWdth, int *nHeight);
C# void fg.flicsize (ref byte Header, out int nWdth, out int
nHei ght);
Delphi procedure fg_flicsize (var Header; var nWdth, nHeight
i nteger);
VB Sub fg flicsize (Header() As Any, nWdth As Long, nHeight As
Long)
VB.NET Sub fg flicsize (ByRef Header As Byte, ByRef nWdth As Integer,
ByRef nHei ght As | nteger)
Description

The fg_flicsize() function returns the dimensions for the flic image associated with the specified
flic file header.

Parameters

Header is the name of the buffer containing the 128-byte FLI/FLC file header.

nWidth receives the flic image width in pixels. If Header does not contain a valid FLI/FLC file
header, nWidth will be set to -1.

nHeight receives the flic image height in pixels. If Header does not contain a valid FLI/FLC file
header, nHeight will be set to -1.

Return value

none

Restrictions

none

See also

fg_flichead(), fg_showflic()

Examples

AVImake, Image

150 » Fastgraph 6.0 Reference Manual

fg_flicskip()

Prototype
C/C++ int fg flicskip (void *Context, int nFranes);
C# int fg.flicskip (ref byte Context, int nFranmes);
Delphi function fg flicskip (var Context; nFrames : integer)
i nt eger;
VB Function fg flicskip (Context() As Any, ByVal nFranes As Long)
As Long

VB.NET Function fg flicskip (ByRef Context As Byte, ByVal nFranes As
I nteger) As Integer

Description

The fg_flicskip() function advances one or more frames in a flic file that was previously opened
with fg_flicopen(). If the last frame played by fg_flicplay() played the frame from the
fg_imagebuf() buffer, the frame position will be adjusted in the fg_imagebuf() buffer. Otherwise,
the flic file position itself will be adjusted.

Parameters
Context is the name of a 16-byte buffer containing the flic file context descriptor.

nFrames is the number of frames to skip in the flic file, starting from the current file position. If
nFrames is negative, the flic file position will be set to the first frame.

Return value

The number of frames skipped. This value may be less than nFrames if the end-of-file is reached
before skipping the requested number of frames. If nFrames is negative, the return value will be
zero.

Restrictions

none
See also

fg_flicopen(), fg_flicplay()
Examples

Image

Fastgraph 6.0 Reference Manual « 151

fg_flipdch()
Prototype
C/C++ void fg flipdcbh (void *Bitmap, int nWdth, int nHeight);
C# void fg.flipdcbh (ref byte Bitmap, int nWdth, int nHeight);
Delphi procedure fg flipdcb (var Bitrmap; nWdth, nHeight : integer);
VB Sub fg_flipdcb (Bitmap() As Any, ByVal nWdth As Long, ByVal
nHei ght As Long)
VB.NET Sub fg flipdcb (ByRef Bitnap As Byte, ByVal nWdth As |nteger,
ByVal nHei ght As | nteger)
Description

The fg_flipdcb() function displays a reversed direct color bitmap, with clipping. The bitmap will
be positioned so that its lower left corner is at the graphics cursor position. Color 0 pixels will be
considered transparent.

For high color virtual buffers, each pixel in the bitmap is a 16-bit (two byte) encoded RGB value.
For true color virtual buffers, each pixel is a 24-bit (three byte) RGB value, stored blue byte first,
then green byte, then red byte. Refer to Chapter 8 of the Fastgraph 6.0 User's Guide for
complete information about direct color bitmaps.

Parameters

Bitmap is the name of the array containing the bitmap.

nWidth is the bitmap width in pixels.

nHeight is the bitmap height in pixels.

Return value

none

Restrictions

This function is meaningful only with direct color virtual buffers.

See also

fg_clipdch(), fg_drawdch(), fg_flpimage(), fg_getdcb(), fg_invdcb(), fg_putdcb(), fg_revdcb()

Examples
Dch

152 « Fastgraph 6.0 Reference Manual

fg_flipmask()

Prototype
C/C++ void fg flipmask (void *Bitmap, int nRuns, int nWdth);
C# void fg.flipmask (ref byte Bitmap, int nRuns, int nWdth);
Delphi procedure fg flipnmask (var Bitmap; nRuns, nWdth : integer);

VB Sub fg_flipmask (Bitmap() As Any, ByVal nRuns As Long, ByVal
nWdth As Long)

VB.NET Sub fg flipnmask (ByRef Bitmap As Byte, ByVal nRuns As |nteger,
ByVal nWdth As Integer)

Description

The fg_flipmask() legacy function displays a reversed masking map, with clipping. The masking
map will be positioned so that its lower left corner is at the graphics cursor paosition.

Parameters

Bitmap is the name of the array containing the masking map. The masking map is a series of
alternating "protect” and "zero" pixel runs. The "protect" runs leave the corresponding virtual
buffer pixels unchanged, while the "zero" runs set them to color zero. The length of each run
must be between 0 and 255.

nRuns is the number of pixel runs in the masking map.
nWidth is the masking map width in pixels.
Return value
none
Restrictions
none
Replaced by

256-color bitmap functions

Fastgraph 6.0 Reference Manual « 153

fg_float()

Prototype
C/C++ double fg float (long n);
C# double fg.Float (int n);
Delphi function fg float (n : longint) : real;
VB Function fg _float (ByVal n As Long) As Doubl e

VB.NET Function fg float (ByVal n As Integer) As Double
Description
The fg_float() legacy function translates a fixed point quantity to its floating point equivalent.
Parameters
n is the fixed point value to translate.
Return value
The floating point equivalent of the specified fixed point value.
Restrictions
none
Replaced by

Floating point 3D geometry system

154 « Fastgraph 6.0 Reference Manual

fg_flood()

Prototype
C/C++ void fg flood (int x, int y);
C# void fg.flood (int x, int y);
Delphi procedure fg flood (x, y : integer);
VB Sub fg _flood (ByvVal x As Long, ByVal y As Long)
VB.NET Sub fg flood (ByVal x As Integer, ByVal y As Integer)
Description

The fg_flood() function fills an arbitrary closed region with pixels of the current color, with
clipping. The region is defined by specifying a screen space point within its interior. If this point
lies outside the clipping region, no fill is performed.

Parameters
x is the screen space x coordinate of the interior point.
y is the screen space y coordinate of the interior point.
Return value
none
Restrictions
none
See also

fg_floodw(), fg_paint()

Fastgraph 6.0 Reference Manual « 155

fg_floodw()

Prototype
C/C++ void fg floodw (doubl e x, double y);
C# void fg.floodw (doubl e x, double y);
Delphi procedure fg floodw (x, y : real);
VB Sub fg_floodw (ByVal x As Double, ByVal y As Doubl e)
VB.NET Sub fg floodw (ByVal x As Double, ByVal y As Doubl e)
Description

The fg_floodw() function fills an arbitrary closed region with pixels of the current color, with
clipping. The region is defined by specifying a 2D world space point within its interior. If this point
lies outside the clipping region, no fill is performed.

Parameters
x is the world space x coordinate of the interior point.
y is the world space y coordinate of the interior point.
Return value
none
Restrictions
none
See also
fg_flood(), fg_paintw()

156 Fastgraph 6.0 Reference Manual

fg_flpimage()

Prototype
C/C++ void fg flpinage (void *Bitmap, int nWdth, int nHeight);
C# void fg.flpinage (ref byte Bitmap, int nWdth, int nHeight);
Delphi procedure fg flpinmage (var Bitmap; nWdth, nHeight : integer);

VB Sub fg_flpinmage (Bitmap() As Any, ByVal nWdth As Long, ByVal
nHei ght As Long)

VB.NET Sub fg flpinmage (ByRef Bitmap As Byte, ByVal nWdth As Integer,
ByVal nHei ght As | nteger)

Description

The fg_flpimage() function displays a reversed 256-color bitmap, with clipping. The bitmap will
be positioned so that its lower left corner is at the graphics cursor position. Refer to Chapter 8 of
the Fastgraph 6.0 User's Guide for complete information about 256-color bitmaps.

Parameters
Bitmap is the name of the array containing the bitmap.
nWidth is the bitmap width in pixels.
nHeight is the bitmap height in pixels.
Return value
none
Restrictions
none
See also

fg_clpimage(), fg_drwimage(), fg_flipdcb(), fg_getimage(), fg_invert(), fg_putimage(),
fg_revimage(), fg_setclip()

Examples

Bitmap, Fishtank

Fastgraph 6.0 Reference Manual « 157

fg_fontdc()

Prototype
C/C++ void fg fontdc (HDC hDQ);
C# void fg.fontdc (IntPtr hDO);
Delphi procedure fg fontdc (hDC : HDO);
VB Sub fg_fontdc (ByVal hDC As Long)

VB.NET Sub fg fontdc (ByVal hDC As IntPtr)
Description

The fg_fontdc() function defines the text device context. By default, fg_print() directs strings to
the window's client area, but fg_fontdc() can redirect strings to the active virtual buffer.

Parameters

hDC is a Windows handle to the device context for text output. To direct strings to the client area,
set hDC to the same device context passed to fg_setdc(). To direct strings to the active virtual
buffer, set hDC to the device context returned by fg_getdc().

Return value
none
Restrictions
none
See also
fg_ddgetdc(), fg_getdc(), fg_print(), fg_setdc()
Examples

Columns, Strings2

158 « Fastgraph 6.0 Reference Manual

fg_fontload()

Prototype
C/C++ void fg fontload (int Fontld);
C# void fg.fontload (int Fontld);

Delphi procedure fg fontload (Fontld : integer);

VB Sub fg_fontload (ByVal Fontld As Long)

VB.NET Sub fg fontload (ByVal Fontld As Integer)
Description

The fg_fontload() function makes the requested Windows stock font the current font.
Parameters

Fontld is a code identifying which font to load. It must reference one of the six stock fonts
supplied with Windows, as shown here:

Value Symbolic Equivalent
10 OEM_FIXED_FONT
11 ANSI_FIXED_FONT
12 ANSI_VAR_FONT
13 SYSTEM_FONT
14 DEVICE_DEFAULT_FONT
16 SYSTEM_FIXED_FONT

Return value
none
Restrictions
none
See also
fg_fontdc(), fg_logfont(), fg_print()
Examples

Fontdemo

Fastgraph 6.0 Reference Manual « 159

fg_gammadcb()

Prototype
C/C++

C#

Delphi

VB

VB.NET

Description

voi d fg _gammadcb (void *Source, void *Dest, double Gammm, int
nSi ze) ;

voi d fg.gammadcb (ref byte Source, ref byte Dest, double Ganms,
int nSize);

procedure fg gammadcb (var Source, Dest; Ganmma : doubl e; nSize
i nteger);

Sub fg_gamadcb (Source() As Any, Dest() As Any, ByVal Ganma As
Doubl e, ByVal nSize As Long)

Sub fg_gamuadcb (ByRef Source As Byte, ByRef Dest As Byte,
ByVal Ganma As Doubl e, ByVal nSize As Integer)

The fg_gammadcb() function applies a gamma correction transform to a direct color bitmap.

Parameters

Source is the name of the array containing the direct color bitmap to be transformed.

Dest is the name of the array that will receive the resulting transformed bitmap.

Gamma is the gamma correction value. Values between 0.0 and 1.0 will lighten the image, while
values greater than 1.0 will darken the image.

nSize is the size of each direct color bitmap in pixels.

Return value

none

Restrictions

This function is meaningful only with direct color virtual buffers.

See also

fg_gammargb(), fg_gammavb()

160 « Fastgraph 6.0 Reference Manual

fg_gammargb()

Prototype
C/C++ void fg gammargb (void *Val ues, double Ganma, int nCount);
C# void fg.gammargb (ref byte Val ues, double Ganma, int nCount);
Delphi procedure fg gammargb (var Val ues; Gamma : doubl e; nCount
i nteger);
VB Sub fg_gammargb (Values() As Any, ByVal Ganmma As Doubl e, ByVal

nCount As Long)

VB.NET Sub fg gammargb (ByRef Values As Byte, ByVal Gamma As Doubl e,
ByVal nCount As Integer)

Description

The fg_gammarghb() function applies a gamma correction transform to a series of RGB color
triples.

Parameters

Values is the name of the array containing the RGB color components, arranged as three-byte
RGB triples. Each RGB color component is a value between 0 and 255; increasing values
produce more intense colors. The size of the Values array must be at least 3*nCount bytes.

Gamma is the gamma correction value. Values between 0.0 and 1.0 will lighten the image, while
values greater than 1.0 will darken the image.

nCount is the number of RGB color triples to transform.
Return value

none
Restrictions

none
See also

fg_gammadcb(), fg_gammavb()

Fastgraph 6.0 Reference Manual « 161

fg_gammavb()

Prototype
C/C++ voi d fg _gammavb (double Gamma, int nWdth, int nHeight);
C# voi d fg.gammavb (double Gamma, int nWdth, int nHeight);
Delphi procedure fg gammavb (Gamma : doubl e; nWdth, nHei ght
i nteger);
VB Sub fg_gammavb (ByVal Gamma As Doubl e, ByVal nWdth As Long,

ByVal nHei ght As Long)

VB.NET Sub fg gammavb (ByVal Gamma As Doubl e, ByVal nWdth As Integer,
ByVal nHei ght As | nteger)

Description

The fg_gammavb() function applies a gamma correction transform to a rectangular region of the
active virtual buffer. The region's lower left corner is at the current graphics position.

Parameters

Gamma is the gamma correction value. Values between 0.0 and 1.0 will lighten the image, while
values greater than 1.0 will darken the image.

nWidth is the region's width in pixels.
nHeight is the region's height in pixels.
Return value
none
Restrictions
This function is meaningful only with direct color virtual buffers.
See also
fg_gammadcb(), fg_gammargb()
Examples

ImgProc

162 « Fastgraph 6.0 Reference Manual

fg_gdiflip()

Prototype
C/C++ void fg gdiflip (void);
C# void fg.gdiflip ();
Delphi procedure fg gdiflip;
VB Sub fg_gdiflip ()

VB.NET Sub fg_gdiflip ()
Description

The fg_gdiflip() function makes the GDI drawing surface the visible surface in a DirectX page
flipping environment.

Parameters
none
Return value
none
Restrictions
This function is available only in Fastgraph's DirectX libraries.
See also
fg_ddflip(), fg_ddsetup()

Fastgraph 6.0 Reference Manual « 163

fg_getblock()

Prototype
C/C++ void fg getblock (void *Buffer, int xMn, int xMax, int yMn,
int yMax);
C# void fg.getblock (ref byte Buffer, int xMn, int xMax, int

yMn, int yMax);

Delphi procedure fg getblock (var Buffer; xMn, xMax, yMn, yMax :
i nteger);

VB Sub fg_getblock (Buffer() As Any, ByVal xMn As Long, ByVal
xMax As Long, ByVal yMn As Long, ByVal yMax As Long)

VB.NET Sub fg getblock (ByRef Buffer As Byte, ByVal xM n As Integer,
ByVal xMax As Integer, ByVal yMn As |Integer, ByVal yMax As
I nt eger)

Description

The fg_getblock() legacy function retrieves a block (for later display with the fg_putblock()
function) from the specified position in the active virtual buffer. The block extremes are defined in
screen space. Use fg_imagesiz() to determine the array size required to hold the block.

Parameters
Buffer is the name of the array to receive the block.
XMin is the screen space x coordinate of the block's left edge.

xMax is the x coordinate of the block's right edge. It must be greater than or equal to the value of
xMin.

yMin is the y coordinate of the block's top edge.

yMax is the y coordinate of the block's bottom edge. It must be greater than or equal to the value
of yMin.

Return value
none
Restrictions

The fg_imagesiz() function provides an easy way to determine the array size required to store
the block. However, in true color virtual buffers that use a 32bpp memory architecture,
fg_imagesiz() does not work because it returns bitmap sizes, which are always 24bpp when
using a true color virtual buffer.

Replaced by
fg_getdcb(), fg_getimage()

164 « Fastgraph 6.0 Reference Manual

fg_getclip()

Prototype
C/C++
C#

Delphi
VB

VB.NET

Description

void fg getclip (int *xMn, int *xMax, int *yMn, int *yMax);

void fg.getclip (out int xMn, out int xMax, out int yMn, out
int yMax);

procedure fg getclip (var xMn, xMax, yMn, yMax : integer);

Sub fg_getclip (xMn As Long, xMax As Long, yMn As Long, yMax
As Long)

Sub fg_getclip (ByRef xMn As Integer, ByRef xMax As Integer,
ByRef yMn As Integer, ByRef yMax As | nteger)

The fg_getclip() function returns the clipping region extremes in screen space. The clipping
region is a rectangular area outside of which certain graphics are suppressed. By default, the
clipping region is set to the virtual buffer extents.

Parameters

XMin receives the x coordinate of the clipping region's left edge.

xMax receives the x coordinate of the clipping region's right edge.

yMin receives the y coordinate of the clipping region's top edge.

yMax receives the y coordinate of the clipping region's bottom edge.

Return value

none

Restrictions

none

See also

fg_setclip(), fg_setclipw()

Fastgraph 6.0 Reference Manual « 165

fg_getclock()

Prototype

C/C++ long fg_getclock (void);

C# int fg.getclock ();

Delphi function fg getclock : 1ongint;

VB Function fg_getclock () As Long

VB.NET Function fg getclock () As Integer
Description

The fg_getclock() function returns the number of clock ticks since Windows started running.
Parameters

none
Return value

The number of clock ticks since Windows started running. There are approximately 18.2 clock
ticks per second.

Restrictions

none

166 « Fastgraph 6.0 Reference Manual

fg_getcolor()

Prototype
C/C++ int fg getcolor (void);
C# int fg.getcolor ();
Delphi function fg getcolor : integer;
VB Function fg_getcolor () As Long

VB.NET Function fg getcolor () As |nteger
Description

The fg_getcolor() function returns the current color, as defined by the most recent call to
fg_setcolor() or fg_setcolorrgb().

Parameters
none
Return value
The current color value.
Restrictions
none
See also
fg_setcolor(), fg_setcolorrgh(), fg_unmaprgb()
Examples
FrameDD

Fastgraph 6.0 Reference Manual « 167

fg_getdacs()

Prototype
C/C++ void fg getdacs (int nStart, int nCount, void *Val ues);
C# void fg.getdacs (int nStart, int nCount, ref byte Val ues);
Delphi procedure fg getdacs (nStart, nCount : integer; var Val ues);
VB Sub fg_getdacs (ByVal nStart As Long, ByVal nCount As Long,

Val ues() As Any)

VB.NET Sub fg getdacs (ByVal nStart As Integer, ByVal nCount As
I nteger, ByRef Values As Byte)

Description

The fg_getdacs() function retrieves the red, green, and blue color components of a consecutive
group of colors in the active logical palette or virtual palette. Retrieving many colors with
fg_getdacs() is faster than doing so individually with fg_getrgb().

Parameters
nStart is the starting color number, between 0 and 255.

nCount is the number of consecutive colors to retrieve, between 1 and 256. The sum of nStart
and nCount cannot exceed 256.

Values is the name of the array that will receive the color components. The first three bytes of this
array receive the red, green, and blue components for color nStart, the next three bytes receive
the components for color nStart+1, and so forth. Each color component is a value between 0 and
255; increasing values produce more intense colors. The size of the Values array must be at
least 3*nCount bytes.

Return value
none
Restrictions
Before calling fg_getdacs(), a logical palette must be defined and realized.
See also
fg_getrgb(), fg_realize(), fg_setdacs()
Examples
Fade

168 « Fastgraph 6.0 Reference Manual

fg_getdc()

Prototype
C/C++ HDC fg_getdc (void);
C# IntPtr fg.getdc ();
Delphi function fg _getdc : HDC
VB Function fg_getdc () As Long

VB.NET Function fg getdc () As IntPtr
Description

The fg_getdc() function returns the handle to the DIB section device context associated with the
active virtual buffer.

Parameters
none
Return value
A Windows handle to the DIB section device context.
Restrictions
Before using fg_getdc(), you must have already called fg_vbinit().
See also
fg_vbinit()
Examples
GDIdemo, Strings2

Fastgraph 6.0 Reference Manual « 169

fg_getdcb()

Prototype
C/C++ void fg getdcb (void *Bitmap, int nWdth, int nHeight);
C# void fg.getdcb (ref byte Bitmap, int nwdth, int nHeight);

Delphi procedure fg getdcb (var Bitmap; nWdth, nHeight : integer);

VB Sub fg_getdchb (Bitmap() As Any, ByVal nWdth As Long, ByVal
nHei ght As Long)

VB.NET Sub fg getdcb (ByRef Bitmap As Byte, ByVal nWdth As Integer,
ByVal nHei ght As | nteger)

Description

The fg_getdcb() function retrieves a direct color bitmap. The graphics cursor defines the
bitmap's lower left corner.

For high color virtual buffers, each pixel in the bitmap will be a 16-bit (two byte) encoded RGB
value. For true color virtual buffers, each pixel will be a 24-bit (three byte) RGB value, stored blue
byte first, then green byte, then red byte. Refer to Chapter 8 of the Fastgraph 6.0 User's Guide for
complete information about direct color bitmaps.

Parameters
Bitmap is the name of the array that will receive the bitmap.
nWidth is the bitmap width in pixels.
nHeight is the bitmap height in pixels.
Return value
none
Restrictions
This function is meaningful only with direct color virtual buffers.
See also

fg_clipdcb(), fg_drawdch(), fg_flipdch(), fg_getimage(), fg_getmap(), fg_invdch(), fg_putdch(),
fg_revdch()

Examples
Blend, TMcube, TMcubeX

170 « Fastgraph 6.0 Reference Manual

fg_getdepth()

Prototype
C/C++ int fg getdepth (void);
C# int fg.getdepth ();

Delphi function fg getdepth : integer;
VB Function fg_getdepth () As Long
VB.NET Function fg getdepth () As Integer
Description
The fg_getdepth() function returns the active virtual buffer's color depth in bits per pixel.
Parameters
none
Return value
The color depth in bits per pixel.
Restrictions
none
See also

fg_colors(), fg_vbdepth()

Fastgraph 6.0 Reference Manual « 171

fg_gethcbpp()

Prototype
C/C++ int fg_gethcbpp (void);
C# int fg.gethcbpp ();
Delphi function fg gethcbpp : integer;
VB Function fg_gethcbpp () As Long
VB.NET Function fg gethcbpp () As |nteger
Description
The fg_gethcbpp() function returns the color depth for high color virtual buffers.
Parameters
none
Return value

The color depth in bits per pixel. For Fastgraph's native libraries and windowed DirectX
programs, the color depth will always be 16. For full screen DirectX programs, the color depth will
be 15 for the 5/5/5 high color pixel format, or 16 for the 5/6/5 high color format.

Restrictions

For full screen DirectX programs, the fg_gethcbpp() return value is meaningful only after calling
fg_vbinit() and only if the fg_ddsetup() color depth parameter was 16.

See also

fg_colors(), fg_transdch()

172 « Fastgraph 6.0 Reference Manual

fg_gethpage()
Prototype
C/C++ int fg_gethpage (void);
C# int fg.gethpage ();
Delphi function fg gethpage : integer;
VB Function fg_gethpage () As Long
VB.NET Function fg gethpage () As |nteger
Description

The fg_gethpage() function returns the background virtual buffer handle, as set in the most
recent call to fg_sethpage().

Parameters
none
Return value
The background virtual buffer handle.
Restrictions
none
See also

fg_sethpage(), fg_vbopen()

Fastgraph 6.0 Reference Manual « 173

fg_getimage()

Prototype
C/C++ void fg getinage (void *Bitmap, int nWdth, int nHeight);
C# void fg.getinage (ref byte Bitmap, int nWdth, int nHeight);
Delphi procedure fg getinage (var Bitmap; nWdth, nHeight : integer);

VB Sub fg_getinmage (Bitmap() As Any, ByVal nWdth As Long, ByVal
nHei ght As Long)

VB.NET Sub fg getinmage (ByRef Bitmap As Byte, ByVal nWdth As Integer,
ByVal nHei ght As | nteger)

Description

The fg_getimage() function retrieves a 256-color bitmap. The graphics cursor defines the
bitmap's lower left corner. Refer to Chapter 8 of the Fastgraph 6.0 User's Guide for complete
information about 256-color bitmaps.

Parameters
Bitmap is the name of the array that will receive the bitmap.
nWidth is the bitmap width in pixels.
nHeight is the bitmap height in pixels.
Return value
none
Restrictions
none
See also

fg_clpimage(), fg_drwimage(), fg_flpimage(), fg_getdcb(), fg_getmap(), fg_putimage(),
fg_revimage()

Examples
AVImake, Fishtank, PCXflip, TMcube, TMcubeX

174 « Fastgraph 6.0 Reference Manual

fg_getindex()

Prototype
C/C++ int fg getindex (int nlndex);
C# int fg.getindex (int nlndex);
Delphi function fg _getindex (nlndex : integer) : integer;
VB Function fg_getindex (ByVal nlndex As Long) As Long

VB.NET Function fg getindex (ByVal nlndex As Integer) As |nteger
Description

The fg_getindex() legacy function returns the color value assigned to a virtual color index.
Parameters

nindex is the virtual color index to retrieve, between 0 and 255.
Return value

The color value assigned to the specified virtual index.
Restrictions

none

Fastgraph 6.0 Reference Manual « 175

fg_getline()

Prototype
C/C++ long fg_getline (int nRow);
C# int fg.getline (int nRow);
Delphi function fg getline (nRow : integer) : |ongint;
VB Function fg_getline (ByVal nRow As Long) As Long

VB.NET Function fg getline (ByVal nRow As |Integer) As |nteger
Description

The fg_getline() function returns the address of the specified scan line in the active virtual buffer.
Parameters

nRow is the scan line number, between 0 and fg_getmaxy/().
Return value

The address of the first pixel in the requested scan line.
Restrictions

none
See also

fg_ddlock(), fg_vbaddr()

176 Fastgraph 6.0 Reference Manual

fg_getlines()

Prototype
C/C++ int fg getlines (void);
C# int fg.getlines ();
Delphi function fg getlines : integer;
VB Function fg_getlines () As Long

VB.NET Function fg getlines () As |nteger
Description

The fg_getlines() legacy function returns the number of text rows in the active virtual buffer when
using the current font.

Parameters
none
Return value
The number of text rows for the current virtual buffer and font.
Restrictions
none
Replaced by

Screen space

Fastgraph 6.0 Reference Manual « 177

fg_getmap()

Prototype
C/C++ void fg getmap (void *Bitmap, int nWdth, int nHeight);
C# void fg.getmap (ref byte Bitmap, int nwWdth, int nHeight);
Delphi procedure fg getmap (var Bitmap; nWdth, nHeight : integer);

VB Sub fg_getmap (Bitmap() As Any, ByVal nWdth As Long, ByVal
nHei ght As Long)

VB.NET Sub fg getmap (ByRef Bitmap As Byte, ByVal nWdth As Integer,
ByVal nHei ght As | nteger)

Description

The fg_getmap() function retrieves a monochrome bitmap. The graphics cursor defines the
bitmap's lower left corner. Refer to Chapter 8 of the Fastgraph 6.0 User's Guide for complete
information about monochrome bitmaps.

Parameters

Bitmap is the name of the array that will receive the bitmap. Each byte of Bitmap represents eight
pixels. Pixels of the current color set the corresponding bits in Bitmap. Pixels of other colors make
the corresponding Bitmap bits zero.

nWidth is the bitmap width in bytes.
nHeight is the bitmap height in bytes.
Return value
none
Restrictions
none
See also

fg_clipmap(), fg_drawmap(), fg_getdcb(), fg_getimage()

178 « Fastgraph 6.0 Reference Manual

fg_getmaxx()

Prototype
C/C++ int fg_getmaxx (void);
C# int fg.getmaxx ();
Delphi function fg getnmaxx : integer;
VB Function fg_getnmaxx () As Long

VB.NET Function fg getnmaxx () As Integer
Description

The fg_getmaxx() function returns the maximum x coordinate in screen space. The maximum x
coordinate is one less than the active virtual buffer’'s horizontal resolution.

Parameters
none
Return value
The maximum x coordinate.
Restrictions
none
See also
fg_getmaxy()
Examples
AVImake, Colors, First, FirstDD, Fishtank, GDIdemo, Image, ImgProc, Rainbow

Fastgraph 6.0 Reference Manual « 179

fg_getmaxy()

Prototype
C/C++ int fg_getmaxy (void);
C# int fg.getmaxy ();
Delphi function fg getnmaxy : integer;
VB Function fg_getnmaxy () As Long

VB.NET Function fg getnmaxy () As Integer
Description

The fg_getmaxy() function returns the maximum y coordinate in screen space. The maximum y
coordinate is one less than the active virtual buffer’s vertical resolution.

Parameters
none
Return value
The maximum y coordinate.
Restrictions
none
See also
fg_getmaxx()
Examples

AVImake, Colors, First, FirstDD, Fishtank, GDIdemo, Image, ImgProc, Rainbow

180 ¢ Fastgraph 6.0 Reference Manual

fg_getpage()
Prototype
C/C++ int fg_getpage (void);
C# int fg.getpage ();
Delphi function fg getpage : integer;
VB Function fg_getpage () As Long
VB.NET Function fg getpage () As Integer
Description

The fg_getpage() legacy function returns the foreground virtual buffer handle, as set in the most
recent call to fg_setpage().

Parameters

none
Return value

The foreground virtual buffer handle.
Restrictions

none

Replaced by
fg_vbcopy()

Fastgraph 6.0 Reference Manual « 181

fg_getpixel()

Prototype
C/C++ int fg getpixel (int x, int y);
C# int fg.getpixel (int x, int y);
Delphi function fg getpixel (x, y : integer) : integer;
VB Function fg_getpixel (ByVal x As Long, ByVal y As Long) As Long

VB.NET Function fg _getpixel (ByVal x As Integer, ByVal y As Integer)
As | nt eger

Description

The fg_getpixel() function returns the color value of a specified pixel.
Parameters

x is the pixel's screen space x coordinate.

y is the pixel's screen space y coordinate.
Return value

The color value of the pixel. For 256-color virtual buffers, it will be between 0 and 255. For high
color virtual buffers, it will be a 16-bit encoded RGB value. For true color virtual buffers, it will be a
32-bit xRGB value.

Restrictions
none
See also

fg_point(), fg_pointw(), fg_putpixel()

182 « Fastgraph 6.0 Reference Manual

fg_getrgb()

Prototype
C/C++ void fg getrgb (int nColor, int *Red, int *Geen, int *Blue);
C# void fg.getrgb (int nColor, out int Red, out int Geen,
Bl ue);
Delphi procedure fg getrgb (nColor : integer; var Red, G een,
i nteger);
VB Sub fg_getrgb (ByVal nColor As Long, Red As Long, Green As

Long, Blue As Long)

VB.NET Sub fg getrgb (ByVal nColor As Integer, ByRef Red As Integer,

ByRef Green As Integer, ByRef Blue As Integer)

Description

The fg_getrgb() function returns the red, green, and blue color components for a specified color

in the active logical palette or virtual palette.
Parameters

nColor is the color number, between 0 and 255.

Red, Green, and Blue respectively receive the red, green, and blue components of the specified
color. Each color component is a value between 0 and 255; increasing values produce more

intense colors.
Return value
none
Restrictions
Before calling fg_getrgb(), a logical palette must be defined and realized.
See also
fg_getdacs(), fg_realize(), fg_setrgb()
Examples
Cube

Fastgraph 6.0 Reference Manual « 183

fg_getview()

Prototype
C/C++

C#

Delphi

VB

VB.NET

Description

void fg getview (int *xMnView, int *xMaxView, int *yM nVi ew,
int *yMaxView, int *xMn, int *xMax, int *yMn, int *yMax);

void fg.getview (out int xMnView, out int xMaxView, out int
yMnView, out int yMaxView, out int xMn, out int xMax, out int
yMn, out int yMax);

procedure fg getview (var xM nVi ew, xMaxVi ew, yM nVi ew,
yMaxVi ew, xM n, xMax, yMn, yMax : integer);

Sub fg_getview (xMnView As Long, xMaxView As Long, yM nView As
Long, yMaxView As Long, xMn As Long, xMax As Long, yMn As
Long, yMax As Long)

Sub fg_getview (ByRef xM nView As |Integer, ByRef xMaxView As

I nteger, ByRef yMnView As Integer, ByRef yMaxView As | nteger,
ByRef xMn As Integer, ByRef xMax As |Integer, ByRef yMn As

I nteger, ByRef yMax As | nteger)

The fg_getview() function returns the 2D viewport extremes in viewport units and screen space

units.

Parameters

xMinView receives the viewport's left edge in viewport units.

xMaxView

receives the viewport's right edge in viewport units.

yMinView receives the viewport's top edge in viewport units.

yMaxView

receives the viewport's bottom edge in viewport units.

XMin receives the viewport's left edge in screen space units.

XxMax receives the viewport's right edge in screen space units.

yMin receives the viewport's top edge in screen space units.

yMax receives the viewport's bottom edge in screen space units.

Return value
none

Restrictions
none

See also

fg_setview()

184 « Fastgraph 6.0 Reference Manual

fg_getworld()

Prototype

C/C++ void fg getworld (double *xMn, double *xMax, double *yM n,
doubl e *yMax) ;

C# void fg.getworld (out double xMn, out double xMax, out doubl e
yMn, out double yMax);

Delphi procedure fg getworld (var xMn, xMax, yMn, yMax : real);

VB Sub fg _getworld (xMn As Doubl e, xMax As Double, yMn As
Doubl e, yMax As Doubl e)

VB.NET Sub fg getworld (ByRef xMn As Doubl e, ByRef xMax As Doubl e,
ByRef yM n As Doubl e, ByRef yMax As Doubl e)

Description

The fg_getworld() function returns the current 2D world space limits, as defined in the most
recent call to fg_setworld().

Parameters
XMin receives the world space coordinate of the virtual buffer’s left edge.
XMax receives the world space coordinate of the virtual buffer’s right edge.
yMin receives the world space coordinate of the virtual buffer's bottom edge.
yMax receives the world space coordinate of the virtual buffer’s top edge.
Return value
none
Restrictions
none
See also

fg_setworld()

Fastgraph 6.0 Reference Manual « 185

fg_getxbox()

Prototype
C/C++ int fg_getxbox (void);
C# int fg.getxbox ();
Delphi function fg getxbox : integer;
VB Function fg_getxbox () As Long

VB.NET Function fg _getxbox () As Integer
Description

The fg_getxbox() function returns the width in pixels of the left and right edges of rectangles
drawn with the fg_box() family of functions. By default, the width is one pixel, but this can be
changed by calling fg_boxdepth().

Parameters
none
Return value

The width in pixels of the left and right sides (that is, the vertical edges) of rectangles drawn with
the fg_box() family of functions.

Restrictions
none
See also

fg_boxdepth(), fg_getybox()

186 ¢ Fastgraph 6.0 Reference Manual

fg_getxjust()

Prototype
C/C++ int fg_getxjust (void);
C# int fg.getxjust ();
Delphi function fg getxjust : integer;
VB Function fg_getxjust () As Long

VB.NET Function fg getxjust () As |nteger
Description

The fg_getxjust() function returns the horizontal justification setting used by fg_print(). The
fg_vbinit() function sets the default justification to -1, and its value may be changed with

fg_justify().
Parameters
none
Return value
- 1 = Strings are left justified relative to the current graphics x position
0 = Strings are centered about the current graphics x position
1 = Strings are right justified relative to the current graphics x position
Restrictions
none

See also

fg_getyjust(), fg_justify()

Fastgraph 6.0 Reference Manual « 187

fg_getxpos()

Prototype
C/C++ int fg_getxpos (void);
C# int fg.getxpos ();
Delphi function fg getxpos : integer;
VB Function fg_getxpos () As Long

VB.NET Function fg _getxpos () As Integer
Description
The fg_getxpos() function returns the screen space x coordinate of the graphics cursor position.
Parameters
none
Return value
The x coordinate of graphics cursor position.
Restrictions
none

See also

fg_getypos()

188 « Fastgraph 6.0 Reference Manual

fg_getybox()

Prototype
C/C++ int fg_getybox (void);
C# int fg.getybox ();
Delphi function fg getybox : integer;
VB Function fg_getybox () As Long
VB.NET Function fg getybox () As Integer
Description

The fg_getybox() function returns the width in pixels of the top and bottom edges of rectangles
drawn with the fg_box() family of functions. By default, the width is one pixel, but this can be
changed by calling fg_boxdepth().

Parameters
none
Return value

The width in pixels of the top and bottom sides (that is, the horizontal edges) of rectangles drawn
with the fg_box() family of functions.

Restrictions
none
See also

fg_boxdepth(), fg_getxbox()

Fastgraph 6.0 Reference Manual « 189

fg_getyjust()

Prototype
C/C++ int fg _getyjust (void);
C# int fg.getyjust ();
Delphi function fg getyjust : integer;
VB Function fg_getyjust () As Long

VB.NET Function fg getyjust () As |nteger
Description

The fg_getyjust() function returns the vertical justification setting used by fg_print(). The
fg_vbinit() function sets the default justification to -1, and its value may be changed with

fg_justify().
Parameters
none
Return value
- 1 = Strings will have their bottom edge at the current graphics y position
0 = Strings are centered about the current graphics y position
1 = Strings will have their top edge at the current graphics y position
Restrictions
none

See also

fg_getxjust(), fg_justify()

190 » Fastgraph 6.0 Reference Manual

fg_getypos()

Prototype

C/C++ int fg_getypos (void);

C# int fg.getypos ();

Delphi function fg getypos : integer;

VB Function fg_getypos () As Long

VB.NET Function fg getypos () As Integer
Description

The fg_getypos() function returns the screen space y coordinate of the graphics cursor position.
Parameters

none
Return value

The y coordinate of graphics cursor position.
Restrictions

none

See also

fg_getxpos()

Fastgraph 6.0 Reference Manual « 191

fg_gouraud()

Prototype
C/C++ void fg gouraud (int *xyArray, char *rgbArray, int n);
C# void fg.gouraud (ref int xyArray, ref byte rgbArray, int n);

Delphi procedure fg gouraud (var xyArray : integer; var rgbArray :
byte; n : integer);

VB Sub fg_gouraud (xyArray() As Long, rgbArray() As Byte, ByVal n
As Long)

VB.NET Sub fg gouraud (ByRef xyArray As Integer, ByRef rgbArray As
Byte, ByVal n As |nteger)

Description

The fg_gouraud() function draws a projected Gouraud-shaded convex polygon in screen space,
with 2D clipping and automatic backface removal. This function is called internally by Fastgraph's
3D functions and is not usually called directly by applications.

Parameters

xyArray is the name of the array containing the (x,y) coordinate pairs of each polygon vertex. The
first array element is the x component of the first vertex, the second element is the y component
of the first vertex, the third element is the x component of the second vertex, and so forth. The
vertices must be stored in clockwise order, meaning you would travel clockwise along the
polygon edge to go from one vertex to the next when facing the front of the polygon.

rgbArray is the name of the array containing the RGB color components for each (x,y) coordinate
pair in xyArray. The first three rgbArray elements represent the RGB color values at the first
vertex in xyArray, the next three rgbArray elements are for the second vertex, and so forth. Each
RGB color component is a value between 0 and 255.

n is the number of vertices in each of the above arrays.
Return value

none
Restrictions

This function is meaningful only with direct color virtual buffers.

If you attempt to fill a non-convex polygon with fg_gouraud(), or if the vertices are not stored in
clockwise order, only a portion of the polygon will be filled.

See also

fg_3Dshade(), fg_3Dshadeobject(), fg_gouraudz(), fg_inside(), fg_polyoff()

192 « Fastgraph 6.0 Reference Manual

fg_gouraudz()

Prototype

C/C++ void fg gouraudz (int *xyArray, char *rgbArray, double
*xyzArray, int n);

C# void fg.gouraudz (ref int xyArray, ref byte rgbArray, ref
doubl e xyzArray, int n);

Delphi procedure fg gouraudz (var xyArray : integer; var rgbArray :
byte; var xyzArray : double; n : integer);

VB Sub fg_gouraudz (xyArray() As Long, rgbArray() As Byte,
xyzArray() As Double, ByVal n As Long)

VB.NET Sub fg gouraudz (ByRef xyArray As |Integer, ByRef rgbArray As
Byte, ByRef xyzArray As Double, ByVal n As Integer)

Description

The fg_gouraudz() function draws a projected z-buffered Gouraud-shaded convex polygon in
screen space, with 2D clipping. This function is called internally by Fastgraph's 3D functions and
is not usually called directly by applications.

Parameters

xyArray is the name of the array containing the (x,y) coordinate pairs of each polygon vertex. The
first array element is the x component of the first vertex, the second element is the y component
of the first vertex, the third element is the x component of the second vertex, and so forth.

rgbArray is the name of the array containing the RGB color components for each (x,y) coordinate
pair in xyArray. The first three rgbArray elements represent the RGB color values at the first
vertex in xyArray, the next three rgbArray elements are for the second vertex, and so forth. Each
RGB color component is a value between 0 and 255.

xyzArray is the name of the array containing the 3D (x,y,z) coordinates for each (x,y) coordinate
pair in xyArray. The first three xyzArray elements represent the (x,y,z) values at the first vertex in
xyArray, the next three xyzArray elements are for the second vertex, and so forth. Only the z
coordinates are meaningful in this function.

n is the number of vertices in each of the above arrays.
Return value

none
Restrictions

This function is meaningful only with direct color virtual buffers.

If you attempt to fill a non-convex polygon with fg_gouraudz(), only a portion of the polygon will
be filled.

See also

fg_3Dshade(), fg_3Dshadeobject(), fg_gouraud(), fg_inside(), fg_polyoff(), fg_zbopen()

Fastgraph 6.0 Reference Manual « 193

fg_graydcb()

Prototype
CIC++
C#
Delphi
VB

VB.NET

Description

void fg _graydchb (void *Source, void *Dest, int nSize);
void fg.graydch (ref byte Source, ref byte Dest, int nSize);
procedure fg graydcb (var Source, Dest; nSize : integer);

Sub fg_graydcb (Source() As Any, Dest() As Any, ByVal nSize As
Long)

Sub fg_graydcb (ByRef Source As Byte, ByRef Dest As Byte, ByVal
nSi ze As | nteger)

The fg_graydcb() function applies a grayscale transform to a direct color bitmap.

Parameters

Source is the name of the array containing the direct color bitmap to be transformed.

Dest is the name of the array that will receive the resulting transformed bitmap.

nSize is the size of each direct color bitmap in pixels.

Return value

none

Restrictions

This function is meaningful only with direct color virtual buffers.

See also

fg_grayrgb(), fg_grayvb()

194 « Fastgraph 6.0 Reference Manual

fg_grayrgb()

Prototype
C/C++ void fg grayrgb (void *Values, int nCount);
C# void fg.grayrgb (ref byte Values, int nCount);
Delphi procedure fg grayrgb (var Values; nCount : integer);
VB Sub fg_grayrgb (Values() As Any, ByVal nCount As Long)

VB.NET Sub fg grayrgb (ByRef Values As Byte, ByVal nCount As |nteger)
Description

The fg_grayrgb() function applies a grayscale transform to a series of RGB color triples.
Parameters

Values is the name of the array containing the RGB color components, arranged as three-byte
RGB triples. Each RGB color component is a value between 0 and 255; increasing values
produce more intense colors. The size of the Values array must be at least 3*nCount bytes.

nCount is the number of RGB color triples to transform.
Return value

none
Restrictions

none

See also

fg_graydchb(), fg_grayvb()

Fastgraph 6.0 Reference Manual « 195

fg_grayvb()

Prototype
C/C++ void fg grayvb (int nWdth, int nHeight);
C# void fg.grayvb (int nWdth, int nHeight);
Delphi procedure fg grayvb (nWdth, nHeight : integer);
VB Sub fg_grayvb (ByVal nWdth As Long, ByVal nHeight As Long)
VB.NET Sub fg grayvb (ByVal nWdth As Integer, ByVal nHeight As
I nt eger)
Description

The fg_grayvb() function applies a grayscale transform to a rectangular region of the active
virtual buffer. The region's lower left corner is at the current graphics position.

Parameters
nWidth is the region's width in pixels.
nHeight is the region's height in pixels.
Return value
none
Restrictions
This function is meaningful only with direct color virtual buffers.
See also
fg_graydch(), fg_grayrgb()
Examples

ImgProc

196 « Fastgraph 6.0 Reference Manual

fg_imagebuf()

Prototype
C/C++ voi d fg_imagebuf (void *Buffer, unsigned int nSize);
C# voi d fg.inmgebuf (ref byte Buffer, int nSize);
Delphi procedure fg imgebuf (var Buffer; nSize : integer);
VB Sub fg_imagebuf (Buffer() As Any, ByVal nSize As Long)

VB.NET Sub fg imagebuf (ByRef Buffer As Byte, ByVal nSize As |nteger)
Description

The fg_imagebuf() function specifies the size and address of the buffer used internally when
creating or displaying image files. The default internal buffer size is 4,096 bytes. Image display or
creation is typically faster when a larger buffer is used.

Parameters
Buffer is the address of the internal buffer.

nSize is the buffer size in bytes. If nSize is zero, Fastgraph will use its own internal buffers when
creating or displaying image files.

Return value
none
Restrictions

When using the .NET framework, Buffer must be a pinned object (this restriction may be lifted in
a future version of Fastgraph).

See also

fg_flicplay(), fg_makebmp(), fg_makepcx(), fg_showbmp(), fg_showflic(), fg_showjpeg(),
fg_showpcx()

Fastgraph 6.0 Reference Manual « 197

fg_imagesiz()

Prototype
C/C++ long fg_inmagesiz (int nWdth, int nHeight);
C# int fg.imagesiz (int nwWdth, int nHeight);
Delphi function fg inagesiz (nWdth, nHeight : integer) : longint;
VB Function fg_inmagesiz (ByVal nWdth As Long, ByVal nHeight As

Long) As Long

VB.NET Function fg_ inagesiz (ByVal nWdth As |Integer, ByVal nHeight As
I nteger) As Integer

Description

The fg_imagesiz() function determines the number of bytes required to store a bitmap of the
specified dimensions for the active virtual buffer's color depth.

Parameters
nWidth specifies the bitmap width in pixels.
nHeight specifies the bitmap height in pixels.
Return value

The number of bytes required to store a bitmap of the specified size, based on the active virtual
buffer's color depth.

Restrictions
none
See also

fg_clipdch(), fg_clpimage(), fg_drawdchb(), fg_drwimage(), fg_flipdcb(), fg_flpimage(), fg_getdch(),
fg_getimage(), fg_putdcb(), fg_putimage(), fg_revdch(), fg_revimage()

Examples
AVImake, PCXflip

198 ¢ Fastgraph 6.0 Reference Manual

fg_initw()

Prototype
C/C++ void fg_ initw (void);
C# void fg.initw ();

Delphi procedure fg initw

VB Sub fg_initw ()

VB.NET Sub fg_initw ()
Description

The fg_initw() function initializes Fastgraph's 2D world space internal parameters. This function
must be called once, before any other function that uses 2D world space coordinates, usually in
the WM_CREATE message handler.

Parameters
none
Return value
none
Restrictions
none
Examples
SWchars

Fastgraph 6.0 Reference Manual « 199

fg_inside()

Prototype
C/C++ int fg inside (int *xyArray, int n, int x, int y);
C# int fg.inside (ref int xyArray, int n, int x, int y);
Delphi function fg_inside (var xyArray : integer; n, x, y : integer)
i nt eger;
VB Function fg_inside (xyArray() As Long, ByVal n As Long, ByVal x

As Long, ByVal y As Long) As Long

VB.NET Function fg_inside (ByRef xyArray As Integer, ByVal n As
Integer, ByVal x As Integer, ByVal y As Integer) As Integer

Description

The fg_inside() function determines if the specified point is inside a convex polygon. The
fg_polyoff() offsets are applied to the polygon vertices but not to the test point.

Parameters

xyArray is the name of the array containing the (x,y) coordinate pairs of each vertex. The first
array element is the x component of the first vertex, the second element is the y component of
the first vertex, the third element is the x component of the second vertex, and so forth.

n is the number of vertices in the polygon. Normally, it is one-half the size of xyArray.
x is the screen space x coordinate of the test point.
y is the screen space y coordinate of the test point.
Return value
0 = The test point is outside the polygon
1 = The test point is inside the polygon
Restrictions
If xyArray does not define a convex polygon, the return value is undefined.

See also

fg_polyedge(), fg_polyfill(), fg_polyline(), fg_polyoff()

200 Fastgraph 6.0 Reference Manual

fg_invdch()

Prototype

C/C++ void fg_ invdcb (void *Bitmap, int nWdth, int nHeight);
C# void fg.invdcb (ref byte Bitmap, int nwdth, int nHeight);

Delphi procedure fg invdcb (var Bitmap; nWdth, nHeight : integer);

VB Sub fg_invdcbh (Bitmap() As Any, ByVal nWdth As Long,
nHei ght As Long)

VB.NET Sub fg invdcb (ByRef Bitmap As Byte, ByVal nWdth As Integer,

ByVal nHei ght As | nteger)

Description

The fg_invdcb() function inverts the orientation of a direct color bitmap. Fastgraph's bitmapped
image display functions expect the bitmap to be stored starting with the bottom row and
proceeding toward the top. The fg_invdch() function will reverse the row order of such bitmaps,

so that a "top to bottom" image becomes a "bottom to top" image, or vice versa.
Parameters

Bitmap is the name of the array containing the bitmap.

nWidth is the bitmap width in pixels.

nHeight is the bitmap height in pixels.
Return value

none
Restrictions

This function is meaningful only with direct color virtual buffers.

See also

fg_clipdch(), fg_drawdchb(), fg_flipdcb(), fg_getdcb(), fg_invert(), fg_putdcb(), fg_revdcb()

Examples
TMcube, TMcubeX

Fastgraph 6.0 Reference Manual « 201

fg_invert()

Prototype
C/C++ void fg invert (void *Bitmap, int nWdth, int nHeight);
C# void fg.invert (ref byte Bitmap, int nwdth, int nHeight);
Delphi procedure fg invert (var Bitmap; nWdth, nHeight : integer);

VB Sub fg_invert (Bitmap() As Any, ByVal nWdth As Long, ByVal
nHei ght As Long)

VB.NET Sub fg invert (ByRef Bitmap As Byte, ByVal nWdth As Integer,
ByVal nHei ght As | nteger)

Description

The fg_invert() function inverts the orientation of a monochrome, 256-color, or direct color
bitmap. Fastgraph's bitmapped image display functions expect the bitmap to be stored starting
with the bottom row and proceeding toward the top. The fg_invert() function will reverse the row
order of such bitmaps, so that a "top to bottom" image becomes a "bottom to top" image, or vice
versa.

Parameters
Bitmap is the name of the array containing the bitmap.
nWidth is the bitmap width in bytes.
nHeight is the bitmap height in bytes.
Return value
none
Restrictions
none
See also

fg_clipdch(), fg_clipmap(), fg_clpimage(), fg_drawdcb(), fg_drawmap(), fg_drwimage(),
fg_flipdcb(), fg_flpimage(), fg_getdcb(), fg_getimage(), fg_getmap(), fg_invdcb(), fg_putimage(),
fg_revdch(), fg_revimage()

Examples
TMcube, TMcubeX

202 « Fastgraph 6.0 Reference Manual

fg_ijpegbuf()
Prototype

C/C++ voi d fg_jpegbuf (void *Buffer, unsigned int nSize);

C# voi d fg.jpegbuf (ref byte Buffer, int nSize);

Delphi procedure fg jpegbuf (Buffer : pointer; nSize : integer);

VB Sub fg_jpegbuf (Buffer() As Any, ByVal nSize As Long)

VB.NET Sub fg jpegbuf (ByRef Buffer As Byte, ByVal nSize As Integer)
Description

The fg_jpegbuf() legacy function is obsolete. A "do nothing" version of fg_jpegbuf() is provided
for source code compatibility with earlier versions of Fastgraph.

Parameters
Buffer is the address of the JPEG buffer.
nSize is the buffer size in bytes.

Return value
none

Restrictions

none

Fastgraph 6.0 Reference Manual « 203

fg_jpeghead()

Prototype
C/C++ int fg jpeghead (char *Fil eNane, void *Header);
C# int fg.jpeghead (string FileNane, ref byte Header);
Delphi function fg jpeghead (FileNane : string; var Header) : integer;
VB Function fg_j peghead (ByVal FileNane As String, Header() As
Any) As Long

VB.NET Function fg_jpeghead (ByVal FileNane As String, ByRef Header As
Byte) As Integer

Description

The fg_jpeghead() function reads a JPEG file header into a 10-byte buffer. Strictly speaking,
JPEG files do not have formal headers, but fg_jpeghead() returns relevant information from the
file’'s start of frame segment. We call it a header for consistency with other image file formats.
Refer to Appendix E of the Fastgraph 6.0 User's Guide for details about the JPEG header.

Parameters

FileName is the name of the JPEG file. It may include a path specification and must be
terminated by a zero byte.

Header is the name of the 10-byte buffer to receive the JPEG file header.

Return value
0 = Success

- 1 = The specified file does not exist

- 2 = The specified file is not a baseline JPEG file
Restrictions

none
See also

fg_jpegsize(), fg_showjpeg()
Examples

Image, ImgProc

204 « Fastgraph 6.0 Reference Manual

fg_jpegmem()

Prototype
C/C++ int fg_jpegnem (void *Header);
C# int fg.jpegnem (ref byte Header);
Delphi function fg_ jpegnmem (var Header) : integer;
VB Function fg_j pegmem (Header () As Any) As Long

VB.NET Function fg jpegmem (ByRef Header As Byte) As Integer
Description

The fg_jpegmem() legacy function is obsolete. A "do nothing" version of fg_jpegmem() is
provided for source code compatibility with earlier versions of Fastgraph.

Parameters
Header is the name of the buffer containing the 10-byte JPEG file header.
Return value

The "do nothing" version of fg_jpegmem() always returns a nominal buffer size of 256 bytes. If
Header does not contain a valid JPEG file header, fg_jpegmem() returns zero.

Restrictions

none

Fastgraph 6.0 Reference Manual « 205

fg_jpegsize()

Prototype
C/C++
C#

Delphi

VB

VB.NET

Description

void fg_jpegsize (void *Header, int *nWdth, int *nHeight);

voi d fg.jpegsize (ref byte Header, out int nWdth, out int
nHei ght);

procedure fg jpegsize (var Header; var nWdth, nHeight
i nteger);

Sub fg_jpegsize (Header() As Any, nWdth As Long, nHeight As
Long)

Sub fg_jpegsi ze (ByRef Header As Byte, ByRef nWdth As Integer,
ByRef nHei ght As | nteger)

The fg_jpegsize() function returns the image dimensions for the JPEG image associated with
the specified JPEG file header.

Parameters

Header is the name of the buffer containing the 10-byte JPEG file header.

nWidth receives the JPEG image width in pixels. If Header does not contain a valid JPEG file
header, nWidth will be set to -1.

nHeight receives the JPEG image height in pixels. If Header does not contain a valid JPEG file
header, nHeight will be set to -1.

Return value

none

Restrictions

none

See also

fg_jpeghead(), fg_showjpeg()

Examples

Image, ImgProc

206 « Fastgraph 6.0 Reference Manual

fg_justify()

Prototype
C/C++ void fg justify (int xJust, int yJust);
C# void fg.justify (int xJust, int yJust);
Delphi procedure fg justify (xJust, yJust : integer);
VB Sub fg_ justify (ByVal xJust As Long, ByVal yJust As Long)
VB.NET Sub fg justify (ByVal xJust As Integer, ByVal yJust As |nteger)
Description

The fg_justify() function defines the horizontal and vertical justification settings for strings
displayed with fg_print().

Parameters

xJust defines the horizontal justification. If xJust is -1, strings will be displayed left justified relative
to the current graphics x position. If xJust is 0, strings will be centered about the x position. If
xJust is 1, strings will be right justified.

yJust defines the vertical justification. If yJust is -1, the bottom of the characters will be the
current graphics y position. If yJust is 0, strings will be centered about the y position. If yJust is 1,
the top of the characters will be at the y position.

Return value
none
Restrictions
The values of xJust and yJust must be -1, 0, or 1.
See also
fg_getxjust(), fg_getyjust(), fg_print()
Examples

Strings1, Strings2

Fastgraph 6.0 Reference Manual « 207

fg_kbtest()

Prototype
C/C++ int fg kbtest (int
C# int fg.kbtest (int

Delphi function fg kbt est
VB Function fg_kbtest
VB.NET Function fg kbt est

Description

ScanCode) ;

ScanCode) ;

(ScanCode : integer) : integer;

(ByVal ScanCode As Long) As Long
(ByVal ScanCode As Integer) As Integer

The fg_kbtest() function determines if the key having the specified scan code is now pressed or

released.

Parameters

ScanCode is the scan code of the key to check, or zero. If ScanCode is zero, fg_kbtest() reports
whether any key is pressed. Refer to Chapter 11 of the Fastgraph 6.0 User's Guide for a list of

scan codes.
Return value
0 =The key is released
1 =The key is pressed
Restrictions
none

Examples

Columns, Cube, KBdemo, TMcube, TMcubeX, Tunnel

208 « Fastgraph 6.0 Reference Manual

fg_loadpcx()

Prototype
C/C++ int fg | oadpcx (char *Fil eName, int Flags);
C# int fg.loadpcx (string FileNanme, int Flags);
Delphi function fg_|l oadpcx (FileNanme : string; Flags : integer)
i nt eger;
VB Function fg_l| oadpcx (ByVal FileNane As String, ByVal Flags As

Long) As Long

VB.NET Function fg | oadpcx (ByVal FileNane As String, ByVal Flags As
I nteger) As Integer

Description

The fg_loadpcx() legacy function displays a PCX file. It is equivalent to the fg_showpcx()
function.

For 256-color virtual buffers, 256-color PCX files are reduced to the 236 non-system colors if
color reduction is enabled. 16-color and monochrome PCX files are always remapped to colors
10 to 25 to avoid conflicts with the system colors.

Parameters

FileName is the name of the PCX file. A device and path name may be included as part of the file
name. The file name must be terminated by a zero byte.

Flags is a series of flags that controls how the image is displayed. Refer to the description of
fg_showpcx() for the meanings of the flags.

Return value
0 = Success
1 = The specified file does not exist
2 = The specified file is not a PCX file
3 = The PCX file cannot be loaded into the active virtual buffer
4 = Error allocating memory
Restrictions

A logical palette must be defined and realized in order to use the palette values stored in the PCX
file.

24-hit PCX files can only be loaded into direct color virtual buffers.
Replaced by
fg_showpcx()

Fastgraph 6.0 Reference Manual « 209

fg_locate()
Prototype
C/C++ void fg locate (int nRow, int nColum);
C# void fg.locate (int nRow, int nColum);
Delphi procedure fg locate (nRow, nColumm : integer);
VB Sub fg_locate (ByVal nRow As Long, ByVal nCol umm As Long)

VB.NET Sub fg locate (ByVal nRow As Integer, ByVal nColumm As | nteger)
Description

The fg_locate() legacy function changes the text cursor position for strings displayed with
fg_text(). The fg_vbinit() function sets the text cursor position to (0,0).

Parameters

nRow is the text cursor's destination row number, between 0 and one less than the number of
character rows available.

nColumn is text cursor's destination column number, between 0 and one less than the number of
character columns available.

Return value
none
Restrictions

When using a proportional font, fg_locate() assumes the width of a character column is equal to
font's average character width.

Replaced by

Screen space

210 « Fastgraph 6.0 Reference Manual

fg_logfont()

Prototype
C/C++ void fg | ogfont (HFONT hFont);
C# void fg.logfont (IntPtr hFont);
Delphi procedure fg | ogfont (hFont : HFONT);
VB Sub fg_logfont (ByVal hFont As Long)

VB.NET Sub fg logfont (ByVal hFont As IntPtr)
Description

The fg_logfont() function makes the requested logical font the current font.
Parameters

hFont is a Windows handle to the logical font, as returned by the Windows API functions
CreateFont() or CreateFontIndirect(), or by a .NET framework Font object's ToHfont() method.

Return value
none
Restrictions
none
See also
fg_fontdc(), fg_fontload(), fg_print()
Examples

Fontdemo

Fastgraph 6.0 Reference Manual « 211

fg_logpal()

Prototype
C/C++ HPALETTE fg_logpal (int nStart, int nCount, void *Val ues);

C# int fg.logpal (int nStart, int nCount, ref byte Val ues);

Delphi function fg logpal (nStart, nCount : integer; var Val ues)
HPALETTE;

VB Function fg_logpal (ByVal nStart As Long, ByVal nCount As Long,

Val ues() As Any) As Long

VB.NET Function fg |ogpal (ByVal nStart As Integer, ByVal nCount As
I nteger, ByRef Values As Byte) As |nteger

Description

The fg_logpal() function creates a 256-color logical palette containing the specified colors. The
logical palette will be set up with the system colors (colors 0-9 and 246-255) set to their default
values, unless explicitly changed.

Parameters
nStart is the starting color number to define in the logical palette, between 0 and 255.

nCount is the number of colors to define, between 0 and 256. The sum of nStart and nCount
cannot exceed 256. If nCount is zero, the logical palette will contain the Windows system colors
as its first and last ten entries, with the remaining 236 colors undefined.

Values is the name of the array containing the color components. The first three bytes of this
array must contain the red, green, and blue components for color nStart, the next three bytes
contain the components for color nStart+1, and so forth. Each RGB color component is a value
between 0 and 255. The size of the Values array must be at least 3*nCount bytes.

Return value

A Windows handle to the new logical palette. If an error occurs in creating the logical palette,
fg_logpal() returns zero.

Restrictions

none
See also

fg_defpal(), fg_realize(), fg_setdacs(), fg_setrgb()
Examples

Rainbow

212 « Fastgraph 6.0 Reference Manual

fg_makebmp()

Prototype

C/C++ int fg makebnp (int xMn, int xMax, int yMn, int yMax,

nDept h, char *Fil eNane);

C# int fg.makebnp (int xMn, int xMax, int yMn, int yMax,

nDepth, string Fil eNane);

Delphi function fg makebnp (xMn, xMax, yMn, yMax, nDepth :
FileName : string) : integer;

VB Function fg_makebnp (ByVal xM n As Long, ByVal xMax As Long,
ByVal yMn As Long, ByVal yMax As Long, ByVal nDepth As Long,

ByVal FileName As String) As Long

VB.NET Function fg makebnp (ByVal xMn As |Integer, ByVal xMax As
Integer, ByVal yMn As Integer, ByVal yMax As | nteger,
nDepth As Integer, ByVal FileNane As String) As |nteger

Description

The fg_makebmp() function creates a BMP file from the specified rectangular region of the

active virtual buffer. The region's extremes are expressed in screen space units.

For 16-color BMP files, fg_makebmp() assumes the color values have been mapped to the non-
system colors. It thus subtracts 10 from each pixel value when creating the BMP file. For
monochrome (2-color) BMP files, fg_makebmp() treats the low-order bit of each pixel as the

actual color.
Parameters

XMin is the x coordinate of the region's left edge.

XMax is the x coordinate of the region's right edge. It must be greater than or equal to xMin.

yMin is the y coordinate of the region's top edge.

yMax is the y coordinate of the region's bottom edge. It must be greater than or equal to yMin.

nDepth is the new BMP file's color depth in bits per pixel. Valid values are 1 (monochrome), 4

(16-color), 8 (256-color), and 24 (direct color RGB).

FileName is the name of the BMP file to create. A device and path name may be included as part
of the file name. The file name must be terminated by a null character (that is, a zero byte). If an

identically named file already exists, it is overwritten.
Return value

0 = Success

1 = The BMP file was not created

2 = Error allocating memaory

Restrictions

Monochrome, 16-color, and 256-color BMP files can only be created with a 256-color virtual

buffer is active.
24-bit BMP files can only be created when a direct color virtual buffer is active.
See also

fg_imagebuf(), fg_makepcx(), fg_showbmp()

Fastgraph 6.0 Reference Manual « 213

fg_makebmp() (continued)

Examples

Image, ImgProc

214 « Fastgraph 6.0 Reference Manual

fg_makepcx()

Prototype

C/C++ int fg makepcx (int xMn, int xMax, int yMn, int yMax, char
*Fi | eNane) ;

C# int fg.makepcx (int xMn, int xMax, int yMn, int yMax, string
Fi | eNane) ;

Delphi function fg makepcx (xMn, xMax, yMn, yMax : integer; FileNanme

string) : integer;
VB Function fg_makepcx (ByVal xMn As Long, ByVal xMax As Long,

ByVal yMn As Long, ByVal yMax As Long, ByVal FileNanme As
String) As Long

VB.NET Function fg makepcx (ByVal xMn As |nteger, ByVal xMax As
Integer, ByVal yMn As Integer, ByVal yMax As |nteger, ByVal
FileName As String) As Integer

Description

The fg_makepcx() function creates a PCX file from the specified rectangular region of the active
virtual buffer. The region's extremes are expressed in screen space units. For 256-color virtual
buffers, fg_makepcx() creates 256-color PCX files; for direct color virtual buffers, it creates 24-bit
PCX files.

Parameters
XMin is the x coordinate of the region's left edge.
XMax is the x coordinate of the region's right edge. It must be greater than or equal to xMin.
yMin is the y coordinate of the region's top edge.
yMax is the y coordinate of the region's bottom edge. It must be greater than or equal to yMin.

FileName is the name of the PCX file to create. A device and path name may be included as part
of the file name. The file name must be terminated by a null character (that is, a zero byte). If an
identically named file already exists, it is overwritten.

Return value
0 = Success
1 = The PCX file was not created
2 = Error allocating memory
Restrictions
none
See also
fg_imagebuf(), fg_makebmp(), fg_showpcx()
Examples

Image, ImgProc

Fastgraph 6.0 Reference Manual « 215

fg_makeppr()

Prototype
C/IC++ int fg_makeppr (int
*Fi | eNane) ;
C# int fg.nmakeppr (int
Fi | eNane) ;
Delphi function fg_makeppr
string) i nt eger;
VB Function fg_makeppr
ByVal yMn As Long,
String) As Long
VB.NET Function fg _makeppr
I nteger, ByVal yMn
Fil eNamre As String)
Description

XMn, int xMax, int yMn, int yMax, char
XMn, int xMax, int yMn, int yMax, string
(xMn, xMax, yMn, yMax : integer; FileNane
(ByvVal xMn As Long, ByVal xMax As Long,
ByVal yMax As Long, ByVal FileNanme As
(ByvVal xMn As Integer, ByVal xMax As

As |Integer, ByVval yMax As |nteger, ByVal

As | nt eger

The fg_makeppr() legacy function creates a packed pixel run (PPR) file from the specified
rectangular region of the active virtual buffer. The region's extremes are expressed in screen

space units.

Parameters

XMin is the x coordinate of the region's left edge.

xMax is the x coordinate of the region's right edge. It must be greater than or equal to xMin.

yMin is the y coordinate of the region's top edge.

yMax is the y coordinate of the region's bottom edge. It must be greater than or equal to yMin.

FileName is the name of the PPR file to create. A device and path name may be included as part
of the file name. The file name must be terminated by a null character (that is, a zero byte). If an
identically named file already exists, it is overwritten.

Return value

0 = Success

1 =The PPR file was not created
Restrictions

none
Replaced by

BMP and PCX creation functions

216 « Fastgraph 6.0 Reference Manual

fg_makespr()

Prototype
C/IC++ int fg_makespr (int
*Fi | eNane) ;
C# int fg.nmakespr (int
Fi | eNane) ;
Delphi function fg_makespr
string) i nt eger;
VB Function fg_makespr
ByVal yMn As Long,
String) As Long
VB.NET Function fg makespr
I nteger, ByVal yMn
Fil eNamre As String)
Description

XMn, int xMax, int yMn, int yMax, char
XMn, int xMax, int yMn, int yMax, string
(xMn, xMax, yMn, yMax : integer; FileNane
(ByvVal xMn As Long, ByVal xMax As Long,
ByVal yMax As Long, ByVal FileNanme As
(ByvVal xMn As Integer, ByVal xMax As

As |Integer, ByVval yMax As |nteger, ByVal

As | nt eger

The fg_makespr() legacy function creates a standard pixel run (SPR) file from the specified

rectangular region of the active virtual

Parameters

buffer.

XMin is the x coordinate of the region's left edge.

XMax is the x coordinate of the region's right edge. It must be greater than or equal to xMin.

yMin is the y coordinate of the region's top edge.

yMax is the y coordinate of the region's bottom edge. It must be greater than or equal to yMin.

FileName is the name of the SPR file to create. A device and path name may be included as part
of the file name. The file name must be terminated by a null character (that is, a zero byte). If an
identically named file already exists, it is overwritten.

Return value

0 = Success

1 = The SPR file was not created
Restrictions

none
Replaced by

BMP and PCX creation functions

Fastgraph 6.0 Reference Manual « 217

fg_mapdacs()

Prototype
C/C++ voi d fg _nmapdacs (void *Source, void *Dest, int nCount);
C# voi d fg.mapdacs (ref byte Source, ref byte Dest, int nCount);
Delphi procedure fg mapdacs (var Source, Dest; nCount : integer);
VB fub ;g_mapdacs (Source() As Any, Dest() As Any, ByVal nCount As
ong

VB.NET Sub fg napdacs (ByRef Source As Byte, ByRef Dest As Byte, ByVal
nCount As |nteger)

Description

The fg_mapdacs() function translates RGB color components from the “0 to 63" range used in
Fastgraph for DOS to the “0 to 255" range used in Fastgraph for Windows.

Parameters

Source is the name of the array containing the “0 to 63" color components. The first three bytes of
this array must contain the red, green, and blue components for the first color, the next three
bytes contain the components for the second color, and so forth. The size of the Source array
must be at least 3*nCount bytes.

Dest is the name of the array to receive the “0 to 255" color components. On return, the first three
bytes of this array will contain the red, green, and blue components for the first color, the next
three bytes will contain the components for the second color, and so forth. The size of the Dest
array must be at least 3*nCount bytes.

nCount is the number of sets of RGB color values to translate.
Return value

none
Restrictions

none
See also

fg_setdacs(), fg_setrgb()

218 « Fastgraph 6.0 Reference Manual

fg_maprgb()
Prototype
C/C++ int fg maprgb (int Red, int Geen, int Blue);
C# int fg.maprgb (int Red, int Geen, int Blue);
Delphi function fg maprgb (Red, Green, Blue : integer) : integer;

VB Function fg_maprgb (ByVal Red As Long, ByVal Green As Long,
ByVal Blue As Long) As Long

VB.NET Function fg maprgb (ByVal Red As Integer, ByVal G een As
Integer, ByVal Blue As Integer) As Integer

Description

When used with a direct color virtual buffer, fg_maprgb() maps 8-bit red, green, and blue color
components into a suitable 16-bit or 24-bit color value, depending on the color depth of the active
virtual buffer. When used with a 256-color virtual buffer, fg_maprgb() returns the index of the
closest matching color in the logical palette.

Parameters

Red, Green, and Blue respectively specify the color's red, green, and blue components. These
values must each be between 0 and 255; increasing values produce more intense colors.

Return value

The color value for the specified RGB components.
Restrictions

none
See also

fg_setcolor(), fg_setcolorrgh(), fg_setrgb(), fg_unmaprgb()
Examples

Columns

Fastgraph 6.0 Reference Manual « 219

fg_measure()

Prototype
C/C++ unsi gned int fg_measure (void);
C# int fg.neasure ();
Delphi function fg measure : integer;
VB Function fg_measure () As Long

VB.NET Function fg neasure () As Integer
Description

The fg_measure() function returns the approximate number of delay units per clock tick. This
guantity is proportional to the system's processor speed. Delay units are used by fg_stall().

Parameters
none
Return value
The approximate number of delay units per clock tick.
Restrictions
none
See also
fg_stall()

220 « Fastgraph 6.0 Reference Manual

fg_memavail()

Prototype
C/C++ long fg_nemavail (void);
C# int fg.nenmavail ();
Delphi function fg memavail : |ongint;
VB Function fg_nmemavail () As Long

VB.NET Function fg nmemavail () As |nteger
Description

The fg_memavail() legacy function determines the amount of free global memory available to
Windows.

Parameters

none
Return value

The amount of free global memory (in bytes) available to Windows.
Restrictions

none

Fastgraph 6.0 Reference Manual « 221

fg_modeset()

Prototype
C/C++

C#

Delphi

VB

VB.NET

Description

int fg nodeset (int nWdth, int nHeight, int nDepth, int
nsStyl e);

int fg.nodeset (int nWdth, int nHeight, int nDepth, int
nstyl e);

function fg nodeset (nWdth, nHeight, nDepth, nStyle : integer)
;i nteger;

Function fg_nodeset (ByVal nWdth As Long, ByVal nHei ght As
Long, ByVal nDepth As Long, ByVal nStyle As Long) As Long

Function fg_nodeset (ByVal nWdth As |Integer, ByVal nHeight As
Integer, ByVal nDepth As Integer, ByVal nStyle As Integer) As
I nt eger

The fg_modeset() function defines the desktop resolution and color depth when using
Fastgraph's native libraries. We recommend that programs that change the display mode with
fg_modeset() do so before setting up the logical palette, as some Windows display drivers
redefine the palette values when changing display modes.

Parameters

nWidth is the new horizontal resolution in pixels.

nHeight is the new vertical resolution in pixels.

nDepth is the new color depth in bits per pixel. It must be 0, 8, 16, 24, or 32. If zero,
fg_modeset() ignores the other parameters and restores the default display resolution and color
depth as defined in the registry.

nStyle controls the taskbar visibility. If nStyle is zero, the display will include a taskbar; if nStyle is
any other value, the taskbar will be invisible.

Return value

<0 = The mode change failed

0 = The mode change was successful

1 = Windows must be restarted before the new mode takes effect

Restrictions

For some older display drivers, if the specified color depth does not match the display's current
color depth, Windows must be restarted before the new mode takes effect.

See also

fg_colors(), fg_ddsetup(), fg_modetest()

Examples

Display, TMcubeX

222 « Fastgraph 6.0 Reference Manual

fg_modetest()

Prototype
C/C++ int fg nodetest (int nwWdth, int nHeight, int nDepth);
C# int fg.nodetest (int nwdth, int nHeight, int nDepth);
Delphi function fg_nodetest (nWdth, nHeight, nDepth : integer)
i nt eger;
VB Function fg_nodetest (ByVal nWdth As Long, ByVal nHeight As

Long, ByVal nDepth As Long) As Long

VB.NET Function fg nodetest (ByVal nWdth As |Integer, ByVal nHeight As
I nteger, ByVal nDepth As Integer) As Integer

Description

The fg_modetest() function checks if the requested display resolution and color depth are
supported when using Fastgraph's native libraries.

Parameters
nWidth is the requested horizontal resolution in pixels.
nHeight is the requested vertical resolution in pixels.
nDepth is requested new color depth in bits per pixel. It must be 8, 16, 24, or 32.
Return value
<0 = The requested mode is not available
0 = The requested mode is available
1 = The requested mode is available, but Windows must first be restarted
Restrictions
none
See also
fg_colors(), fg_modeset()
Examples

Display

Fastgraph 6.0 Reference Manual « 223

fg_mousecur()

Prototype
C/C++ voi d fg _nousecur (HCURSOR hCursor);
C# voi d fg.nousecur (IntPtr hCursor);
Delphi procedure fg nousecur (HCURSOR hCursor);
VB Sub fg_nousecur (ByVal hCursor As Long)

VB.NET Sub fg nousecur (ByVal hCursor As IntPtr)
Description

The fg_mousecur() function activates a mouse cursor previously created with fg_mouseptr(). It
is usually called in the WM_SETCURSOR message handler when the mouse cursor enters the
window's client area.

Parameters

hCursor is a Windows handle to the mouse cursor, usually created with fg_mouseptr() or the
Windows API function LoadCursor().

Return value
none
Restrictions
none
See also
fg_mouseini(), fg_mouseptr()
Examples
MCdemo

224 « Fastgraph 6.0 Reference Manual

fg_mouseini()

Prototype
C/C++ int fg_nouseini (void);
C# int fg.nouseini ();
Delphi function fg nmouseini : integer;
VB Function fg_nouseini () As Long

VB.NET Function fg nmouseini () As |nteger
Description

The fg_mouseini() function initializes Fastgraph's mouse environment. It must be called before
any of Fastgraph's other mouse support functions, usually in the WM_CREATE message
handler.

Parameters

none
Return value

1 = The mouse initialization was successful

- 1 = The mouse initialization failed
Restrictions

none
See also

fg_mousecur(), fg_mouselim(), fg_mousemov(), fg_mousepos(), fg_mouseptr(), fg_mousevis()
Examples

FrameDD, FullScr, MCdemo

Fastgraph 6.0 Reference Manual « 225

fg_mouselim()

Prototype
C/C++ void fg nouselim(int xMn, int xMax, int yMn, int yMax);
C# void fg.nouselim(int xMn, int xMax, int yMn, int yMax);
Delphi procedure fg nouselim (xMn, xMax, yMn, yMax : integer);

VB Sub fg_nouselim (ByVal xMn As Long, ByVal xMax As Long, ByVal
yMn As Long, ByVal yMax As Long)

VB.NET Sub fg nouselim (ByVal xMn As |Integer, ByVal xMax As | nteger,
ByVal yMn As Integer, ByVal yMax As | nteger)

Description

The fg_mouselim() function defines the rectangular area in which the mouse cursor may move.
The area is defined in virtual buffer coordinates and is automatically translated to the equivalent
client coordinates.

Parameters
xMin is the x coordinate of the area's left edge.

xMax is the x coordinate of the area's right edge. If xMax is less than xMin, the mouse cursor can
move anywhere on the screen.

yMin is the y coordinate of the area's top edge.

yMax is the y coordinate of the area's bottom edge. If yMax is less than yMin, the mouse cursor
can move anywhere on the screen.

Return value
none

Restrictions
none

See also

fg_mouseini(), f{g_mousemov()

226 « Fastgraph 6.0 Reference Manual

fg_mousemov()

Prototype
C/C++ void fg nousenov (int x, int y);
C# void fg.nousenov (int x, int y);
Delphi procedure fg nousenmov (X, y : integer);
VB Sub fg_nousenov (ByVal x As Long, ByVal y As Long)

VB.NET Sub fg nousenov (ByVal x As Integer, ByVal y As Integer)
Description

The fg_mousemov() function moves the mouse cursor to the specified screen space position.
The position is defined in virtual buffer coordinates and is automatically translated to the
equivalent client coordinates. The mouse cursor is moved whether or not it is currently visible.

Parameters
x is the x coordinate of the new mouse cursor position.
y is the y coordinate of the new mouse cursor position.
Return value
none
Restrictions

If you attempt to move the mouse cursor outside the area defined by fg_mouselim(),
fg_mousemov() positions the cursor at the nearest point possible within that area.

See also

fg_mouseini(), fg_mouselim(), fg_mousepos()

Fastgraph 6.0 Reference Manual « 227

fg_mousepos()

Prototype
C/C++ voi d fg nousepos (int *x, int *y);
C# voi d fg.nousepos (out int x, out int y);
Delphi procedure fg nousepos (var X, y : integer);
VB Sub fg_nousepos (x As Long, y As Long)

VB.NET Sub fg nousepos (ByRef x As Integer, ByRef y As Integer)
Description

The fg_mousepos() function returns the current mouse position. The position is automatically
translated from client coordinates to the equivalent virtual buffer coordinates.

Parameters

X receives the x coordinate of the mouse cursor position. If the cursor is outside the client area, x
will be set to -1.

y receives the y coordinate of the mouse cursor position. If the cursor is outside the client area, y
will be set to -1.

Return value
none

Restrictions
none

See also

fg_mouseini(), fg_mousemov()

228 « Fastgraph 6.0 Reference Manual

fg_mouseptr()

Prototype
C/C++ HCURSOR fg_nouseptr (void *Masks, int xOfset, int yOfset);
C# IntPtr fg.nmouseptr (ref byte Masks, int xOfset, int yOffset);
Delphi function fg nmouseptr (var Masks; xOfset, yOfset : integer)
HCURSOR;
VB Function fg_nouseptr (Masks() As Any, ByVal xOfset As Long,

ByVal yOfset As Long) As Long

VB.NET Function fg nouseptr (ByRef Masks As Byte, ByVal xOfset As
Integer, ByVal yOifset As Integer) As IntPtr

Description

The fg_mouseptr() function creates a user-defined mouse cursor. Refer to Chapter 11 of the
Fastgraph 6.0 User's Guide for complete information about defining the mouse cursor.

Parameters

Masks is a array containing the 16-element or 32-element screen mask followed by the 16-
element or 32-element cursor mask. The mouse driver displays the mouse cursor by logically
ANDiIng the screen contents with the screen mask, and then XORing that result with the cursor
mask. The first item of each mask corresponds to the top row of the mouse cursor. The following
table summarizes the cursor appearance for all possible combinations of mask bits.

Screen Mask Bit Cursor Mask Bit Resulting Cursor Pixel
0 0 black
0 1 white
1 0 unchanged
1 1 inverted

xOffset is the x coordinate of the "hot spot" relative to the upper left corner of the mouse cursor.
yOffset is the y coordinate of the "hot spot" relative to the upper left corner of the mouse cursor.
Return value
A Windows handle to the user-defined mouse cursor.
Restrictions
none
See also
fg_mousecur(), fg_mouseini(), f{g_mousesiz(), fg_mousevis()
Examples
MCdemo

Fastgraph 6.0 Reference Manual « 229

fg_mousesiz()

Prototype
C/C++ voi d fg nousesiz (int nPixels);
C# voi d fg.nousesiz (int nPixels);
Delphi procedure fg nousesiz (nPixels : integer);
VB Sub fg_nousesiz (ByVal nPixels As Long)

VB.NET Sub fg nousesiz (ByVal nPixels As |nteger)

Description

The fg_mousesiz() function defines the mouse cursor size in pixels. Valid sizes are 16x16 (the
default) and 32x32.

Parameters
nPixels is the mouse cursor width and height in pixels. It must be either 16 or 32.
Return value
none
Restrictions
The new cursor size does not take effect until the next fg_mouseptr() call.
See also

fg_mouseini(), fg_mouseptr(), fg_mousevis()

230 « Fastgraph 6.0 Reference Manual

fg_mousevis()

Prototype
C/C++ void fg nousevis (int State);
C# void fg.nousevis (int State);
Delphi procedure fg nousevis (State : integer);
VB Sub fg_nousevis (ByVal State As Long)

VB.NET Sub fg nousevis (ByVal State As Integer)
Description

The fg_mousevis() function makes the mouse cursor visible or invisible.
Parameters

State defines the mouse cursor visibility. If State is 0, the mouse cursor is made invisible. If itis 1,
the mouse cursor is made visible.

Return value
none
Restrictions
none
See also
fg_mouseini()
Examples
FrameDD, FullScr

Fastgraph 6.0 Reference Manual « 231

fg_move()
Prototype
C/C++ void fg nove (int x, int y);
C# void fg.nove (int x, int y);
Delphi procedure fg nove (x, y : integer);
VB Sub fg_nove (ByVal x As Long, ByVal y As Long)

VB.NET Sub fg nove (ByVal x As Integer, ByVal y As Integer)
Description

The fg_move() function establishes the graphics cursor position at an absolute screen space
point. The fg_vbinit() function sets the graphics cursor position to (0,0).

Parameters
X is the screen space x coordinate of the graphics cursor's new position.
y is the screen space y coordinate of the graphics cursor's new position.
Return value
none
Restrictions
none
See also
fg_moverel(), fg_moverw(), fg_movew()
Examples

Most of the example programs use this function.

232 « Fastgraph 6.0 Reference Manual

fg_move3d()

Prototype
C/C++

C#

Delphi

VB

VB.NET

Description

void fg nove3d (long *Transform long x, long y, long z, int
Fl ag) ;

void fg.nove3d (ref int Transform int x, int y, int z, int
Fl ag) ;

procedure fg nove3dd (var Transform: longint; x, y, z:
longint; Flag : integer);

Sub fg_nove3d (Transform() As Long, ByVal x As Long, ByVal y As
Long, ByVal z As Long, ByVal Flag As Long)

Sub fg_nove3d (ByRef Transform As Integer, ByVal x As Integer,
ByVal y As Integer, ByVal z As Integer, ByVal Flag As Integer)

The fg_move3d() legacy function builds a 3D transformation matrix representing an absolute or
relative move by the specified 3D coordinates.

Parameters

Transform is the name of the 12-element transformation matrix containing fixed point 3D rotation
and 3D translation values.

X, ¥, and z are the fixed point values defining the new (x,y,z) position in 3D space.

Flag controls if the move is absolute or relative. If Flag is zero, the move is absolute and the
specified coordinates become the new translation values in the transformation matrix. If Flag is
not zero, the move is relative and the coordinates are added to the translation values in the
transformation matrix.

Return value

none

Restrictions

none

Replaced by

Floating point 3D geometry system

Fastgraph 6.0 Reference Manual « 233

fg_moverel()

Prototype
C/C++ void fg noverel (int x, int y);
C# void fg.noverel (int x, int y);
Delphi procedure fg noverel (x, y : integer);
VB Sub fg_noverel (ByVal x As Long, ByVal y As Long)

VB.NET Sub fg noverel (ByVal x As Integer, ByVal y As |nteger)
Description

The fg_moverel() function establishes the graphics cursor position at a screen space point
relative to the current position.

Parameters
X is the screen space x offset of the graphics cursor's new position.
y is the screen space y offset of the graphics cursor's new position.
Return value
none
Restrictions
none
See also
fg_move(), fg_moverw(), fg_movew()
Examples
Rotate, TMcube, TMcubeX

234 « Fastgraph 6.0 Reference Manual

fg_moverw()

Prototype
C/C++ voi d fg noverw (doubl e x, double y);
C# voi d fg.noverw (doubl e x, double y);
Delphi procedure fg noverw (x, y : real);
VB Sub fg_noverw (ByVal x As Double, ByVal y As Doubl e)
VB.NET Sub fg noverw (ByVal x As Double, ByVal y As Doubl e)
Description

The fg_moverw() function establishes the graphics cursor position at a 2D world space point
relative to the current position.

Parameters
x is the world space x offset of the graphics cursor's new position.
y is the world space y offset of the graphics cursor's new position.
Return value
none
Restrictions
none
See also

fg_move(), fg_moverel(), fg_movew()

Fastgraph 6.0 Reference Manual « 235

fg_movew()

Prototype
C/C++ voi d fg novew (double x, double y);
C# voi d fg.novew (double x, double y);
Delphi procedure fg novew (x, y : real);
VB Sub fg_novew (ByVal x As Double, ByVal y As Doubl e)
VB.NET Sub fg novew (ByVal x As Double, ByVal y As Doubl e)
Description

The fg_movew() function establishes the graphics cursor position at an absolute 2D world space
point. The fg_initw() function sets the graphics cursor position to (0.0,0.0).

Parameters
x is the world space x coordinate of the graphics cursor's new position.
y is the world space y coordinate of the graphics cursor's new position.
Return value
none
Restrictions
none
See also
fg_move(), fg_moverel(), fg_moverw()
Examples
SWchars

236 « Fastgraph 6.0 Reference Manual

fg_opacity()

Prototype
C/C++ void fg opacity (int Qpacity);
C# void fg.opacity (int Qpacity);
Delphi procedure fg opacity (Opacity : integer);
VB Sub fg_opacity (ByVal Opacity As Long)
VB.NET Sub fg opacity (ByVal Qpacity As Integer)
Description

The fg_opacity() function defines the foreground opacity value used by the alpha blending
functions.

Parameters

Opacity is the opacity value. It must be between 0 (foreground is transparent) and 255
(foreground is completely opaque).

Return value
none
Restrictions
none
See also
fg_blend(), fg_blenddch(), fg_blendvb()
Examples
Blend

Fastgraph 6.0 Reference Manual « 237

fg_pack()
Prototype
C/C++ void fg pack (void *Source, void *Dest, int nWdth, int
nHei ght);
C# voi d fg.pack (ref byte Source, ref byte Dest, int nWdth, int
nHei ght);
Delphi procedure fg pack (var Source, Dest; nWdth, nHei ght
i nteger);
VB Sub fg_pack (Source() As Any, Dest() As Any, ByVal nWdth As

Long, ByVal nHei ght As Long)

VB.NET Sub fg pack (ByRef Source As Byte, ByRef Dest As Byte, ByVal
nWdth As Integer, ByVal nHei ght As |nteger)

Description
The fg_pack() legacy function converts a 256-color bitmap a 16-color bitmap.
Parameters
Source is the name of the array containing the 256-color bitmap to convert.
Dest is the name of the array that will receive the converted 16-color bitmap.
nWidth is the Source bitmap width in pixels.
nHeight is the Source bitmap height in pixels.
Return value
none
Restrictions
none
Replaced by

256-color bitmap functions

238 « Fastgraph 6.0 Reference Manual

fg_pagesize()
Prototype
C/C++ long fg_pagesize (int nWdth, int nHeight);
C# int fg.pagesize (int nWdth, int nHeight);
Delphi function fg pagesize (nWdth, nHeight : integer) : longint;

VB Function fg_pagesi ze (ByVal nWdth As Long, ByVal nHeight As
Long) As Long

VB.NET Function fg _pagesize (ByVal nWdth As |Integer, ByVal nHeight As
I nteger) As Integer

Description

The fg_pagesize() legacy function returns the number of bytes needed for a virtual buffer of the
specified dimensions, using the current color depth. It is equivalent to the fg_vbsize() function.

Parameters
nWidth specifies the virtual buffer width in pixels.
nHeight specifies the virtual buffer height in pixels.
Return value
The virtual buffer size in bytes.
Restrictions
none
Replaced by
fg_vbsize()

Fastgraph 6.0 Reference Manual « 239

fg_paint()

Prototype
C/C++ void fg paint (int x, int y);
C# void fg.paint (int x, int y);
Delphi procedure fg paint (x, y : integer);
VB Sub fg_paint (ByvVal x As Long, ByVal y As Long)
VB.NET Sub fg paint (ByVal x As Integer, ByVal y As Integer)
Description

The fg_paint() function fills an arbitrary closed region with pixels of the current color. The region
is defined by specifying a screen space point within its interior.

Parameters
X is the screen space x coordinate of the interior point.
y is the screen space y coordinate of the interior point.
Return value
none
Restrictions

The virtual buffer edges are not considered region boundaries, and filling an open region will
cause fg_paint() to behave unpredictably.

See also
fg_flood(), fg_paintw()
Examples

Graphics, Scroller

240 « Fastgraph 6.0 Reference Manual

fg_paintw()

Prototype
C/C++ voi d fg _paintw (double x, double y);
C# voi d fg.pai ntw (double x, double y);
Delphi procedure fg paintw (x, y : real);
VB Sub fg_paintw (ByVal x As Double, ByVal y As Doubl e)
VB.NET Sub fg paintw (ByVal x As Double, ByVal y As Doubl e)
Description

The fg_paintw() function fills an arbitrary closed region with pixels of the current color. The
region is defined by specifying a 2D world space point within its interior.

Parameters
x is the world space x coordinate of the interior point.
y is the world space y coordinate of the interior point.
Return value
none
Restrictions

The virtual buffer edges are not considered region boundaries, and filling an open region will
cause fg_paintw() to behave unpredictably.

See also

fg_floodw(), fg_paint()

Fastgraph 6.0 Reference Manual « 241

fg_paste()

Prototype

C/C++ void fg paste (void *Bitnap, void *Section, int xPos, int yPos,
int nWdth, int nSecWdth, int nSecHeight);

C# void fg.paste (ref byte Bitmap, ref byte Section, int xPos, int
yPos, int nWdth, int nSecWdth, int nSecHeight);

Delphi procedure fg paste (var Bitnap, Section; xPos, yPos, nWdth,
nSecW dt h, nSecHei ght : integer);

VB Sub fg_paste (Bitmap() As Any, Section() As Any, ByVal xPos As
Long, ByVal yPos As Long, ByVal nWdth As Long, ByVal nSecWdth
As Long, ByVal nSecHei ght As Long)

VB.NET Sub fg paste (ByRef Bitrmap As Byte, ByRef Section As Byte,
ByVal xPos As Integer, ByVal yPos As |Integer, ByVal nWdth As
I nteger, ByVal nSecWdth As Integer, ByVal nSecHei ght As
I nt eger)

Description
The fg_paste() function inserts a 256-color bitmap section into a 256-color bitmap.
Parameters

Bitmap is the name of the array containing the bitmap into which fg_paste() will insert the bitmap
section.

Section is the name of the array containing the bitmap section. This bitmap is not modified in any
way.

xPos is the x coordinate that defines where to insert the bitmap section within Bitmap. The bitmap
section's left edge will be at this position.

yPos is the y coordinate that defines where to insert the bitmap section within Bitmap. The bitmap
section's bottom edge will be at this position.

nWidth is the width of Bitmap in pixels.
nSecWidth is the bitmap section width in pixels.
nSecHeight is the bitmap section height in pixels.
Return value
none
Restrictions
none
See also

fg_cut(), fg_pastedcb()

242 « Fastgraph 6.0 Reference Manual

fg_pastedchb()

Prototype

C/C++ void fg pastedcb (void *Bitmap, void *Section, int xPos, int
yPos, int nWdth, int nSecWdth, int nSecHeight);

C# voi d fg.pastedcb (ref byte Bitmap, ref byte Section, int xPos,
int yPos, int nWdth, int nSecWdth, int nSecHeight);

Delphi procedure fg pastedcb (var Bitmap, Section; xPos, yPos, nWdth,
nSecW dt h, nSecHei ght : integer);

VB Sub fg_pastedcb (Bitmap() As Any, Section() As Any, ByVal xPos
As Long, ByVal yPos As Long, ByVal nWdth As Long, ByVal
nSecWdth As Long, ByVal nSecHei ght As Long)

VB.NET Sub fg pastedcb (ByRef Bitnmap As Byte, ByRef Section As Byte,
ByVal xPos As Integer, ByVal yPos As |Integer, ByVal nWdth As
I nteger, ByVal nSecWdth As Integer, ByVal nSecHei ght As
I nt eger)

Description
The fg_pastedchb() function inserts a direct color bitmap section into a direct color bitmap.
Parameters

Bitmap is the name of the array containing the bitmap into which fg_pastedchb() will insert the
bitmap section.

Section is the name of the array containing the bitmap section. This bitmap is not modified in any
way.

xPos is the x coordinate that defines where to insert the bitmap section within Bitmap. The bitmap
section's left edge will be at this position.

yPos is the y coordinate that defines where to insert the bitmap section within Bitmap. The bitmap
section's bottom edge will be at this position.

nWidth is the width of Bitmap in pixels.

nSecWidth is the bitmap section width in pixels.

nSecHeight is the bitmap section height in pixels.
Return value

none
Restrictions

This function is meaningful only with direct color virtual buffers.
See also

fg_cutdcb(), fg_paste()

Fastgraph 6.0 Reference Manual « 243

fg_pcxhead()

Prototype
CIC++
C#
Delphi
VB

VB.NET

Description

int fg pcxhead (char *Fil eName, void *Header);
int fg.pcxhead (string FileNane, ref byte Header);
function fg pcxhead (FileNane : string; var Header) : integer;

Function fg_pcxhead (ByVal FileNane As String, Header() As Any)
As Long

Function fg_pcxhead (ByVal FileNane As String, ByRef Header As
Byte) As Integer

The fg_pcxhead() function reads a PCX file header into a 128-byte buffer. Refer to Appendix E
of the Fastgraph 6.0 User's Guide for details about the PCX header.

Parameters

FileName is the name of the PCX file. It may include a path specification and must be terminated
by a zero byte.

Header is the name of the buffer to receive the PCX file header. Its size must be at least 128

bytes.

Return value

0 = Success

- 1 = The specified file does not exist

- 2 = The specified file is not a PCX file

Restrictions

none

See also

fg_pcxpal(), fg_pcxrange(), fg_pcxsize(), fg_showpcex()

Examples

Image, ImgProc

244 « Fastgraph 6.0 Reference Manual

fg_pcxpal()

Prototype
C/C++ int fg pcxpal (char *FileNane, void *Palette);
C# int fg.pcxpal (string FileName, ref byte Palette);
int fg.pcxpal (string FileName, int Null Paramn;
Delphi function fg pcxpal (FileName : string; var Palette) : integer;
VB Function fg_pcxpal (ByVal FileNanme As String, Palette() As Any)
As Long

VB.NET Function fg pcxpal (ByVal FileNane As String, ByRef Palette As
Byte) As |nteger
Function fg_pcxpal (ByVal FileName As String, ByVal Null Param
As Integer) As Integer

Description

The fg_pcxpal() function retrieves the palette of an image stored in a PCX file. The palette
values are returned as RGB color components, each between 0 and 255.

If the PCX file includes an extended (256-color) palette, fg_pcxpal() will return the values in the
extended palette. Otherwise, fg_pcxpal() will return the values from the 16-color palette in the
PCX header.

Parameters
FileName is name of the PCX file. The file name must be terminated by a zero byte.

Palette is the name of the array that will receive the PCX palette values. The palette values are
returned as RGB color components, each between 0 and 255. The first three bytes of Palette will
contain the RGB values for color 0, the next three for color 1, and so forth. The size of the Palette
array must be at least three times the number of colors in the PCX palette. You can also specify
NULL for the Palette parameter (0 for C# and VB.NET, ni | ~ for Delphi, ByVal 0 for Visual
Basic, or BYVAL 9NULL for PowerBASIC). In this case fg_pcxpal() will return the image's color
depth but no palette values.

Return value
>0 = The number of colors in the PCX palette (16 or 256)
0 = The PCX file does not have a palette (24-bit PCX file)
- 1 = The specified file does not exist
- 2 = The specified file is not a PCX file
Restrictions
none
See also
fg_pcxhead(), fg_setdacs(), fg_showpcx()
Examples

Image, ImgProc

Fastgraph 6.0 Reference Manual « 245

fg_pcxrange()

Prototype

C/C++ voi d fg pcxrange (void *Header, int *xMn, int *xMax, int
*yMn, int *yMax);

C# voi d fg.pcxrange (ref byte Header, out int xMn, out int xMx,
out int yMn, out int yMax);

Delphi procedure fg pcxrange (var Header; var xMn, xMax, yMn, yMax :
i nteger);

VB Sub fg_pcxrange (Header() As Any, xMn As Long, xMax As Long,
yMn As Long, yMax As Long)

VB.NET Sub fg pcxrange (ByRef Header As Byte, ByRef xM n As Integer,
ByRef xMax As Integer, ByRef yMn As |Integer, ByRef yMax As
I nt eger)

Description

The fg_pcxrange() function returns the image extents for the PCX image associated with the
specified PCX file header.

Parameters
Header is the name of the buffer containing the 128-byte PCX file header.

XMin receives the x coordinate of the image's left edge. If Header does not contain a valid PCX
file header, xMin will be set to -1.

XMax receives the x coordinate of the image's right edge. If Header does not contain a valid PCX
file header, xMax will be set to -1.

yMin receives the y coordinate of the image's top edge. If Header does not contain a valid PCX
file header, yMin will be set to -1.

yMax receives the y coordinate of the image's bottom edge. If Header does not contain a valid
PCX file header, yMax will be set to -1.

Return value
none

Restrictions
none

See also

fg_pcxhead(), fg_pcxsize(), fg_showpcex()

246 « Fastgraph 6.0 Reference Manual

fg_pcxsize()

Prototype
C/C++
C#

Delphi

VB

VB.NET

Description

voi d fg _pcxsize (void *Header, int *nWdth, int *nHeight);

voi d fg.pcxsize (ref byte Header, out int nWdth, out int
nHei ght);

procedure fg pcxsize (var Header; var nWdth, nHei ght
i nteger);

Sub fg_pcxsize (Header() As Any, nWdth As Long, nHei ght As
Long)

Sub fg_pcxsize (ByRef Header As Byte, ByRef nWdth As Integer,
ByRef nHei ght As | nteger)

The fg_pcxsize() function returns the image dimensions for the PCX image associated with the
specified PCX file header.

Parameters

Header is the name of the buffer containing the 128-byte PCX file header.

nWidth receives the PCX image width in pixels. If Header does not contain a valid PCX file
header, nWidth will be set to -1.

nHeight receives the PCX image height in pixels. If Header does not contain a valid PCX file
header, nHeight will be set to -1.

Return value

none

Restrictions

none

See also

fg_pcxhead(), fg_pcxrange(), fg_showpex()

Examples

Image, ImgProc

Fastgraph 6.0 Reference Manual « 247

fg_photodch()

Prototype
C/C++ voi d fg_photodcb (void *Source, void *Dest, int nSize);

C# voi d fg.photodcb (ref byte Source, ref byte Dest, int nSize);

Delphi procedure fg photodcb (var Source, Dest; nSize : integer);

VB Sub fg_photodcb (Source() As Any, Dest() As Any, ByVal nSize As
Long)

VB.NET Sub fg photodcbhb (ByRef Source As Byte, ByRef Dest As Byte,
ByVal nSize As Integer)

Description
The fg_photodcb() function applies a photo-inversion transform to a direct color bitmap.
Parameters
Source is the name of the array containing the direct color bitmap to be transformed.
Dest is the name of the array that will receive the resulting transformed bitmap.
nSize is the size of each direct color bitmap in pixels.
Return value
none
Restrictions
This function is meaningful only with direct color virtual buffers.
See also

fg_photorgb(), fg_photovb()

248 « Fastgraph 6.0 Reference Manual

fg_photorghb()

Prototype
C/C++ voi d fg _photorgb (void *Val ues, int nCount);
C# voi d fg.photorgb (ref byte Values, int nCount);
Delphi procedure fg photorgb (var Values; nCount : integer);
VB Sub fg_photorgb (Values() As Any, ByVal nCount As Long)

VB.NET Sub fg photorgb (ByRef Values As Byte, ByVal nCount As |nteger)
Description

The fg_photorgb() function applies a photo-inversion transform to a series of RGB color triples.
Parameters

Values is the name of the array containing the RGB color components, arranged as three-byte
RGB triples. Each RGB color component is a value between 0 and 255; increasing values
produce more intense colors. The size of the Values array must be at least 3*nCount bytes.

nCount is the number of RGB color triples to transform.
Return value

none
Restrictions

none
See also

fg_photodchb(), fg_photovb()

Fastgraph 6.0 Reference Manual « 249

fg_photovb()

Prototype
C/C++ void fg photovb (int nWdth, int nHeight);
C# voi d fg.photovb (int nWdth, int nHeight);
Delphi procedure fg photovb (nWdth, nHeight : integer);
VB Sub fg_photovb (ByVal nWdth As Long, ByVal nHeight As Long)
VB.NET Sub fg photovb (ByVal nWdth As Integer, ByVal nHei ght As
I nt eger)
Description

The fg_photovb() function applies a photo-inversion transform to a rectangular region of the
active virtual buffer. The region's lower left corner is at the current graphics position.

Parameters
nWidth is the region's width in pixels.
nHeight is the region's height in pixels.
Return value
none
Restrictions
This function is meaningful only with direct color virtual buffers.
See also
fg_photodch(), fg_photorgb()
Examples

ImgProc

250 « Fastgraph 6.0 Reference Manual

fg_point()

Prototype
C/C++ void fg point (int x, int y);
C# void fg.point (int x, int y);
Delphi procedure fg point (x, y : integer);
VB Sub fg_point (ByvVal x As Long, ByVal y As Long)
VB.NET Sub fg point (ByVal x As Integer, ByVal y As Integer)
Description
The fg_point() function draws a point (displays a pixel) in screen space, with clipping.
Parameters
X is the point's screen space x coordinate.
y is the point's screen space y coordinate.
Return value
none
Restrictions
none
See also
fg_pointw(), fg_pointx(), fg_putpixel()
Examples

Graphics

Fastgraph 6.0 Reference Manual « 251

fg_pointw()

Prototype
C/C++ voi d fg _pointw (double x, double y);
C# voi d fg.pointw (double x, double y);
Delphi procedure fg pointw (x, y : real);
VB Sub fg_pointw (ByVal x As Double, ByVal y As Doubl e)
VB.NET Sub fg pointw (ByVal x As Double, ByVal y As Doubl e)
Description
The fg_pointw() function draws a point (displays a pixel) in 2D world space, with clipping.
Parameters
x is the point's world space x coordinate.
y is the point's world space y coordinate.
Return value
none
Restrictions
none
See also

fg_point(), fg_pointxw()

252 « Fastgraph 6.0 Reference Manual

fg_pointx()

Prototype
C/C++ void fg pointx (int x, int y);
C# void fg.pointx (int x, int y);
Delphi procedure fg pointx (x, y : integer);
VB Sub fg_pointx (ByVal x As Long, ByVal y As Long)
VB.NET Sub fg pointx (ByVal x As Integer, ByVal y As |nteger)
Description

The fg_pointx() function draws a point (displays a pixel) in "exclusive or" mode in screen space,
with clipping.

Parameters
X is the point's screen space x coordinate.
y is the point's screen space y coordinate.
Return value
none
Restrictions
none
See also

fg_point(), fg_pointxw()

Fastgraph 6.0 Reference Manual « 253

fg_pointxw()

Prototype
C/C++ voi d fg_poi ntxw (doubl e x, double y);
C# voi d fg. poi ntxw (doubl e x, double y);
Delphi procedure fg pointxw (x, y : real);
VB Sub fg_pointxw (ByVal x As Double, ByVal y As Doubl e)
VB.NET Sub fg pointxw (ByVal x As Double, ByVal y As Doubl e)
Description

The fg_pointxw() function draws a point (displays a pixel) in "exclusive or" mode in 2D world
space, with clipping.

Parameters
x is the point's world space x coordinate.
y is the point's world space y coordinate.
Return value
none
Restrictions
none
See also

fg_pointw(), fg_pointx()

254 « Fastgraph 6.0 Reference Manual

fg_polyedge()
Prototype
C/C++ voi d fg_polyedge (int Flag);
C# voi d fg. polyedge (int Flag);
Delphi procedure fg pol yedge (Flag : integer);
VB Sub fg_pol yedge (ByVal Flag As Long)
VB.NET Sub fg pol yedge (ByVal Flag As |nteger)
Description

The fg_polyedge() function specifies if polygons drawn with fg_polyfill() will have their right and
bottom edge pixels included. By default, such pixels are excluded.

Parameters

Flag controls the drawing of a filled polygon's right and bottom edge pixels. If Flag is 0, these
pixels are included. If it is 1, these pixels are excluded.

Return value
none
Restrictions
This function has no effect when using Direct3D (edge pixels are always excluded with Direct3D).

See also
fg_inside(), fg_polyfill()

Fastgraph 6.0 Reference Manual « 255

fg_polyfill()

Prototype

C/C++ void fg polyfill (int *xyArray, void *Unused, int n);

C# void fg.polyfill (ref int xyArray, ref byte Unused, int n);
void fg.polyfill (ref int xyArray, int Unused, int n);

Delphi procedure fg polyfill (var xyArray : integer; var Unused; n :
i nteger);

VB Sub fg_polyfill (xyArray() As Long, Unused() As Any, ByVal n As
Long)

VB.NET Sub fg polyfill (ByRef xyArray As Integer, ByRef Unused As
Byte, ByVal n As |nteger)

Description

The fg_polyfill() function draws a filled convex polygon in screen space, with clipping and
optional backface removal. The polygon is filled with pixels of the current color. By default, pixels
along the polygon’s right and bottom edges are excluded to improve polygon meshing. This
feature can be disabled through fg_polyedge().

Parameters

xyArray is the name of the array containing the (x,y) coordinate pairs of each vertex. The first
array element is the x component of the first vertex, the second element is the y component of
the first vertex, the third element is the x component of the second vertex, and so forth. If
backface removal is specified, the vertices must be stored in clockwise order, meaning you would
travel clockwise along the polygon edge to go from one vertex to the next when facing the front of
the polygon.

Unused is an unused parameter. In previous versions of Fastgraph, it was a work array used
internally by fg_polyfill().

n is the number of vertices in the polygon. To specify backface removal, negate n. For example,
to draw a four-vertex polygon with backface removal, set n to -4.

Return value
none
Restrictions
If you attempt to fill a non-convex polygon, only a portion of it will be filled.

If n is negative and the vertices are not stored in clockwise order, the polygon will not be drawn
correctly.

See also
fg_inside(), fg_polyedge(), fg_polyline(), fg_polyoff()
Examples

Graphics

256 « Fastgraph 6.0 Reference Manual

fg_polyfilz()
Prototype
C/C++ void fg polyfilz (int *xyArray, double *xyzArray, int n);
C# void fg.polyfilz (ref int xyArray, ref double xyzArray, int n);

Delphi procedure fg polyfilz (var xyArray : integer; var xyzArray :
byte; n : integer);

VB Sub fg_polyfilz (xyArray() As Long, xyzArray() As Doubl e, ByVal
n As Long)

VB.NET Sub fg polyfilz (ByRef xyArray As |Integer, ByRef xyzArray As
Doubl e, ByVal n As Integer)

Description

The fg_polyfilz() function draws a projected z-buffered filled convex polygon in screen space,
with 2D clipping. This function is called internally by Fastgraph's 3D functions and is not usually
called directly by applications.

Parameters

xyArray is the name of the array containing the (x,y) coordinate pairs of each polygon vertex. The
first array element is the x component of the first vertex, the second element is the y component
of the first vertex, the third element is the x component of the second vertex, and so forth.

xyzArray is the name of the array containing the 3D (x,y,z) coordinates for each (x,y) coordinate
pair in xyArray. The first three xyzArray elements represent the (x,y,z) values at the first vertex in
xyArray, the next three xyzArray elements are for the second vertex, and so forth. Only the z
coordinates are meaningful in this function.

n is the number of vertices each of the above arrays.
Return value

none
Restrictions

If you attempt to fill a non-convex polygon with fg_polyfilz(), only a portion of the polygon will be
filled.

See also

fg_inside(), fg_polyfill(), fg_polyoff(), fg_zbopen()

Fastgraph 6.0 Reference Manual « 257

fg_polygon()

Prototype
CIC++
C#
Delphi

VB

VB.NET

Description

void fg polygon (int *xArray, int *yArray, int n);
void fg.polygon (ref int xArray, ref int yArray, int n);

procedure fg polygon (var xArray, yArray : integer; n :
i nteger);

Sub fg_polygon (xArray() As Long, yArray() As Long, ByVal n As
Long)

Sub fg_pol ygon (ByRef xArray As Integer, ByRef yArray As
Integer, ByVal n As Integer)

The fg_polygon() function draws an unfilled polygon in screen space, using two coordinate
arrays to define the polygon vertices. The drawing of the polygon begins at the first vertex defined
in the coordinate arrays, through the remaining vertices in sequence, and finally back to the first
vertex if necessary.

Parameters

xArray is the name of the array containing the screen space x coordinates of the polygon

vertices.

yArray is the name of the array containing the screen space y coordinates of the polygon vertices.

n is the number of vertices in the polygon.

Return value

none

Restrictions

none

See also

fg_polyline(), fg_polygonw()

258 « Fastgraph 6.0 Reference Manual

fg_polygonw()

Prototype
CIC++
C#
Delphi
VB

VB.NET

Description

voi d fg_pol ygonw (doubl e *xArray, double *yArray, int n);
voi d fg. polygonw (ref double xArray, ref double yArray, int n);
procedure fg pol ygonw (var xArray, yArray : real; n : integer);

Sub fg_pol ygonw (xArray() As Double, yArray() As Double, ByVal
n As Long)

Sub fg_pol ygonw (ByRef xArray As Doubl e, ByRef yArray As
Doubl e, ByVal n As Integer)

The fg_polygonw() function draws an unfilled polygon in 2D world space, using two coordinate
arrays to define the polygon vertices. The drawing of the polygon begins at the first vertex defined
in the coordinate arrays, through the remaining vertices in sequence, and finally back to the first
vertex if necessary.

Parameters

xArray is the name of the array containing the world space x coordinates of the polygon vertices.

yArray is the name of the array containing the world space y coordinates of the polygon vertices.

n is the number of vertices in the polygon.

Return value

none

Restrictions

none

See also

fg_polygon()

Fastgraph 6.0 Reference Manual « 259

fg_polyline()

Prototype
C/C++ void fg polyline (int *xyArray, int n);
C# void fg.polyline (ref int xyArray, int n);
Delphi procedure fg polyline (var xyArray : integer; n : integer);
VB Sub fg_polyline (xyArray() As Long, ByVal n As Long)

VB.NET Sub fg polyline (ByRef xyArray As Integer, ByVal n As |nteger)
Description

The fg_polyline() function draws an unfilled polygon in screen space, using a single array to
define the polygon vertices. Compare this to fg_polygon(), which uses separate arrays for the x
and y components of each vertex.

Parameters

xyArray is the name of the array containing the (x,y) coordinate pairs of each vertex. The first
array element is the x component of the first vertex, the second element is the y component of
the first vertex, the third element is the x component of the second vertex, and so forth.

n is the number of vertices in the polygon.
Return value

none
Restrictions

none

See also

fg_polyfill(), fg_polygon(), fg_polyoff()

260 « Fastgraph 6.0 Reference Manual

fg_polyoff()

Prototype
C/C++ void fg polyoff (int x, int y);
C# void fg.polyoff (int x, int y);
Delphi procedure fg polyoff (x, y : integer);
VB Sub fg_pol yoff (ByVal x As Long, ByVal y As Long)
VB.NET Sub fg polyoff (ByVal x As Integer, ByVal y As |nteger)
Description

The fg_polyoff() function defines the screen space offset applied to each polygon vertex in all 2D
and 3D polygon drawing functions except fg_polygon() and fg_polyline(). By default, the
polygon drawing functions use an offset of zero, meaning their vertex arrays specify the actual
vertex coordinates.

Parameters
x is the horizontal screen space offset applied to the x component of all vertices.
y is the vertical screen space offset applied to the y component of all vertices.
Return value
none
Restrictions
none
See also

fg_3Dpolygon(), fg_3Dpolygonobject(), fg_3Dshade(), fg_3Dshadeobject(), fg_3Dtexturemap(),
fg_3Dtexturemapobject(), fg_gouraud(), fg_gouraudz(), fg_inside(), fg_polyfill(), fg_polyfilz(),
fg_polyline(), fg_texmap(), fg_texmapp(), fg_texmappz(), fg_texmapz()

Examples

Graphics

Fastgraph 6.0 Reference Manual « 261

fg_print()

Prototype

C/C++ void fg print (char *s, int n);
C# void fg.print (string s, int n);
Delphi procedure fg print (s : string;
VB Sub fg_print (ByvVal s As String,
VB.NET Sub fg print (ByVal s As String,

Description

i nteger);

ByVal n As Long)
ByVal n As Integer)

The fg_print() function displays a character string relative to the current graphics position using
the current color. The characters are clipped at the client area or virtual buffer edges, not the area
defined with fg_setclip(). By default, strings are displayed such that the bottom row of the first
character is at the current graphics position. On return, the graphics cursor is positioned just to

the right of the last character displayed.

By default, fg_print() displays strings directly in the window's client area, but strings can be

redirected to the active virtual buffer with fg_fontdc().

Parameters

s is the sequence of characters to display.

n is the number of characters to display from s.
Return value

none

Restrictions

You cannot direct strings to virtual buffers created with fg_vbdefine().

See also
fg_fontdc(), fg_fontload(), fg_justify(), fg_logfont()
Examples

Columns, Fontdemo, Strings1, Strings2

262 « Fastgraph 6.0 Reference Manual

fg_printdc()

Prototype
C/C++ void fg printdc (HDC hDC);
C# void fg.printdc (IntPtr hDQO);
Delphi procedure fg printdc (hDC : HDO);
VB Sub fg_printdc (ByVal hDC As Long)

VB.NET Sub fg printdc (ByVal hDC As IntPtr)
Description

The fg_printdc() function establishes a printer device context. The fg_printer() and fg_vbprint()
functions will direct output to the printer associated with that device context. If you do not call
fg_printdc(), these functions will direct output to the default printer.

Parameters
hDC is a Windows handle to the printer device context. If hDC is zero, printer output is directed to
the default printer.
Return value
none
Restrictions
none
See also
fg_printer(), fg_vbprint()
Examples

Prdemo

Fastgraph 6.0 Reference Manual « 263

fg_printer()

Prototype
C/C++ int fg printer (int nMessage);
C# int fg.printer (int nMessage);
Delphi function fg printer (nMessage : integer) : integer;
VB Function fg_printer (ByVal nMessage As Long) As Long

VB.NET Function fg printer (ByVal nMessage As |nteger) As |nteger
Description

The fg_printer() function issues a printer request. It works together with fg_vbprint() to print the
contents of a virtual buffer. C++Builder and Delphi programs that select a printer through the Print
dialog box should use the TPrinter methods Abort(), BeginDoc(), EndDoc(), and NewPage() in
place of the functionality provided by fg_printer(). C# and VB.NET programs should use the
PrintDocument object instead of fg_printer(), as shown in the Prdemo example.

Parameters

nMessage is a code specifying one of the following printer functions:

Symbol Value Meaning

ABORTDOC 2 Abort the current print job
ENDDOC 11 End a print job
NEWFRAME 1 Issue a page eject
STARTDOC 10 Start a print job

Return value
For STARTDOC requests, the return value will be one of the following:
0 = Success
- 1 = No default printer is defined
- 2 = The printer is off-line or otherwise unavailable
- 3 = The printer does not support the STRETCHDIB function
-4 = A printer device context could not be created for the default printer
For all other requests, the return value will be zero.
Restrictions
none
See also
fg_printdc(), fg_vbprint()
Examples

Prdemo

264 « Fastgraph 6.0 Reference Manual

fg_project()

Prototype

C/C++ void fg project (long *Transform |ong *Source, int *Dest, int
n);

C# void fg.project (ref int Transform ref int Source, ref int
Dest, int n);

Delphi procedure fg project (var Transform Source : longint; var Dest

integer; n : integer);
VB Sub fg_project (Transform() As Long, Source() As Long, Dest()

As Long, ByVal n As Long)

VB.NET Sub fg project (ByRef Transform As |Integer, ByRef Source As
I nteger, ByRef Dest As Integer, ByVal n As Integer)

Description

The fg_project() legacy function projects a series of 3D (x,y,z) points to 2D (X,y) screen space
points, using the specified transformation matrix.

Parameters

Transform is the name of the 12-element transformation matrix containing fixed point 3D rotation
and 3D translation values.

Source is the name of the array containing the fixed point 3D (x,y,z) coordinates to project to
screen space. The first three elements of the Source array contain the coordinates for the first
point, the next three elements are for the next point, and so on.

Dest is the name of the array that receives the projected 2D (x,y) screen space coordinates. The
first two elements of the Dest array will contain the coordinates for the first point, the next two
elements will contain the next point, and so on. The size of Dest must be large enough to hold
2*n integer values.

n is the number of 3D points to project.
Return value

none
Restrictions

Before using this function, you must set up a 3D viewport with fg_view3d().
Replaced by

Floating point 3D geometry system

Fastgraph 6.0 Reference Manual « 265

fg_putblock()

Prototype
C/C++

C#

Delphi

VB

VB.NET

Description

void fg putblock (void *Buffer, int xMn, int xMax, int yMn,
int yMax);

void fg.putblock (ref byte Buffer, int xMn, int xMax, int
yMn, int yMmax);

procedure fg putblock (var Buffer; xMn, xMax, yMn, yMax :
i nteger);

Sub fg_putblock (Buffer() As Any, ByVal xMn As Long, ByVal
xMax As Long, ByVal yMn As Long, ByVal yMax As Long)

Sub fg_putblock (ByRef Buffer As Byte, ByVal xMn As Integer,
ByVal xMax As Integer, ByVal yMn As |Integer, ByVal yMax As
I nt eger)

The fg_putblock() legacy function displays a block (previously obtained with the fg_getblock()
function) at the specified position in the active virtual buffer. The block extremes are defined in
screen space.

Parameters

Buffer is the name of the array containing the block.

XMin is the x coordinate of the block's left edge.

xMax is the x coordinate of the block's right edge. It must be greater than or equal to the value of

xMin.

yMin is the y coordinate of the block's top edge.

yMax is the y coordinate of the block's bottom edge. It must be greater than or equal to the value

of yMin.
Return value

none
Restrictions

none

Replaced by

fg_putdcb(), fg_putimage()

266 « Fastgraph 6.0 Reference Manual

fg_putdcb()

Prototype
CIC++
C#
Delphi
VB

VB.NET

Description

void fg putdcb (void *Bitmap, int nWdth, int nHeight);
void fg.putdcb (ref byte Bitmap, int nwdth, int nHeight);
procedure fg putdcb (var Bitmap; nWdth, nHeight : integer);

Sub fg_putdcb (Bitmap() As Any, ByVal nWdth As Long, ByVal
nHei ght As Long)

Sub fg_putdcb (ByRef Bitmap As Byte, ByVal nwWdth As Integer,
ByVal nHei ght As | nteger)

The fg_putdcb() function displays a direct color bitmap, without clipping. It is similar to
fg_drawdcb() but does not treat color O pixels as transparent. The bitmap will be positioned so
that its lower left corner is at the graphics cursor position.

For high color virtual buffers, each pixel in the bitmap is a 16-bit (two byte) encoded RGB value.
For true color virtual buffers, each pixel is a 24-bit (three byte) RGB value, stored blue byte first,
then green byte, then red byte. Refer to Chapter 8 of the Fastgraph 6.0 User's Guide for
complete information about direct color bitmaps.

Parameters

Bitmap is the name of the array containing the bitmap.

nWidth is the bitmap width in pixels.

nHeight is the bitmap height in pixels.

Return value

none

Restrictions

This function is meaningful only with direct color virtual buffers.

See also

fg_clipdcb(), fg_drawdchb(), fg_flipdcb(), fg_getdcb(), fg_invdcb(), fg_putimage(), fg_revdcb()

Examples

Blend, Dcb

Fastgraph 6.0 Reference Manual « 267

fg_putimage()

Prototype
C/C++ void fg putinage (void *Bitmap, int nWdth, int nHeight);
C# void fg.putinage (ref byte Bitmap, int nWdth, int nHeight);
Delphi procedure fg putinage (var Bitmap; nWdth, nHeight : integer);

VB Sub fg_putinmage (Bitmap() As Any, ByVal nWdth As Long, ByVal
nHei ght As Long)

VB.NET Sub fg putinage (ByRef Bitmap As Byte, ByVal nWdth As Integer,
ByVal nHei ght As | nteger)

Description

The fg_putimage() function displays a 256-color bitmap, without clipping. It is similar to
fg_drwimage() but does not treat color 0 pixels as transparent. The bitmap will be positioned so
that its lower left corner is at the graphics cursor position. Refer to Chapter 8 of the Fastgraph 6.0
User's Guide for complete information about 256-color bitmaps.

Parameters
Bitmap is the name of the array containing the bitmap.
nWidth is the bitmap width in pixels.
nHeight is the bitmap height in pixels.
Return value
none
Restrictions
none
See also
fg_drwimage(), fg_getimage(), fg_invert()
Examples

Bitmap

268 « Fastgraph 6.0 Reference Manual

fg_putpixel()
Prototype
C/C++ void fg putpixel (int x, int y);
C# void fg.putpixel (int x, int y);
Delphi procedure fg putpixel (x, y : integer);
VB Sub fg_putpixel (ByVal x As Long, ByVal y As Long)
VB.NET Sub fg putpixel (ByVal x As Integer, ByVal y As Integer)
Description
The fg_putpixel() function displays a pixel in screen space, without clipping.
Parameters
x is the pixel's screen space x coordinate.
y is the pixel's screen space y coordinate.
Return value
none
Restrictions
none

See also

fg_point(), fg_pointx()

Fastgraph 6.0 Reference Manual « 269

fg_realize()
Prototype
C/C++ void fg realize (HPALETTE hPal);
C# void fg.realize (int hPal);
Delphi procedure fg realize (hPal : HPALETTE);
VB Sub fg_realize (ByVal hPal As Long)

VB.NET Sub fg realize (ByVal hPal As |nteger)
Description

The fg_realize() function activates or “realizes” a logical palette created with fg_defpal() or
fg_logpal(). The colors defined in a logical palette determine the colors in which pixels are
displayed in the client area. The WM_SETFOCUS message handler usually calls fg_realize().

Parameters
hPal is a Windows handle to the logical palette, as returned by fg_defpal() or fg_logpal().
Return value
none
Restrictions
none
See also
fg_defpal(), fg_getdacs(), fg_getrgh(), fg_logpal(), fg_setdacs(), fg_setrgh()
Examples

All the example programs use this function.

270 « Fastgraph 6.0 Reference Manual

fg_rect()

Prototype
C/C++ void fg rect (int xMn, int xMax, int yMn, int yMax);
C# void fg.rect (int xMn, int xMax, int yMn, int yMax);
Delphi procedure fg rect (xMn, xMax, yMn, yMax : integer);

VB Sub fg_rect (ByVal xMn As Long, ByVal xMax As Long, ByVal yMn
As Long, ByVal yMax As Long)

VB.NET Sub fg rect (ByVal xMn As |Integer, ByVal xMax As |nteger,
ByVal yMn As Integer, ByVal yMax As | nteger)

Description

The fg_rect() function draws a solid (filled) rectangle in screen space, without clipping.
Parameters

xMin is the x coordinate of the rectangle's left edge.

xMax is the x coordinate of the rectangle's right edge. It must be greater than or equal to the
value of xMin.

yMin is the y coordinate of the rectangle's top edge.

yMax is the y coordinate of the rectangle's bottom edge. It must be greater than or equal to the
value of yMin.

Return value
none
Restrictions
none
See also
fg_box(), fg_clprect(), fg_drect(), fg_rectw(), fg_rectx()
Examples

Columns, Graphics, Scroller, VBdemo

Fastgraph 6.0 Reference Manual « 271

fg_rectw()
Prototype
C/C++ void fg rectw (double xMn, double xMax, double yMn, double

C#

Delphi
VB

VB.NET

Description

yMax) ;

void fg.rectw (double xMn, double xMax, double yMn, double
yMax) ;

procedure fg rectw (xMn, xMax, yMn, yMax : real);

Sub fg_rectw (ByvVal xMn As Doubl e, ByVal xMax As Doubl e, ByVal
yMn As Doubl e, ByVal yMax As Doubl e)

Sub fg_rectw (ByvVal xMn As Double, ByVal xMax As Doubl e, ByVal
yMn As Doubl e, ByVal yMax As Doubl e)

The fg_rectw() function draws a solid (filled) rectangle in 2D world space, without clipping.

Parameters

xMin is the world space x coordinate of the rectangle's left edge.

xMax is the world space x coordinate of the rectangle's right edge. It must be greater than or
equal to the value of xMin.

yMin is the world space y coordinate of the rectangle's bottom edge.

yMax is the world space y coordinate of the rectangle's top edge. It must be greater than or equal
to the value of yMin.

Return value
none

Restrictions
none

See also

fg_boxw(),

fg_clprectw(), fg_drectw(), fg_rect()

272 « Fastgraph 6.0 Reference Manual

fg_rectx()

Prototype
C/C++ void fg rectx (int xMn, int xMax, int yMn, int yMax);
C# void fg.rectx (int xMn, int xMax, int yMn, int yMax);
Delphi procedure fg rectx (xMn, xMax, yMn, yMax : integer);

VB Sub fg rectx (ByvVal xMn As Long, ByVal xMax As Long, ByVal
yMn As Long, ByVal yMax As Long)

VB.NET Sub fg rectx (ByVal xMn As Integer, ByVal xMax As I nteger,
ByVal yMn As Integer, ByVal yMax As | nteger)

Description

The fg_rectx() function draws a solid (filled) rectangle in “exclusive or” mode in screen space,
without clipping.

Parameters
XMin is the x coordinate of the rectangle’s left edge.

XxMax is the x coordinate of the rectangle’s right edge. It must be greater than or equal to the
value of xMin.

yMin is the y coordinate of the rectangle’s top edge.

yMax is the y coordinate of the rectangle’s bottom edge. It must be greater than or equal to the
value of yMin.

Return value
none

Restrictions
none

See also

fg_clprectx(), fg_rect()

Fastgraph 6.0 Reference Manual « 273

fg_reduce()

Prototype
C/C++ void fg reduce (int nOfset, int nColors, void *Val ues);
C# void fg.reduce (int nOOfset, int nColors, ref byte Val ues);
Delphi procedure fg reduce (nOffset, nColors : integer; var Values);
VB Sub fg_reduce (ByVal nOfset As Long, ByVal nCol ors As Long,

Val ues() As Any)

VB.NET Sub fg reduce (ByVal nOfset As Integer, ByVal nColors As
I nteger, ByRef Val ues As Byte)

Description

The fg_reduce() function reduces a 256-color palette to the specified number of colors, and
optionally applies a color offset to the resulting palette. The pixel data within the current clipping
region of the active 256-color virtual buffer determines the color occurrences used in the color
reduction process.

On return, the pixels in the clipping region are translated to the colors defined by the resulting
palette, but the palette itself is not made active.

Parameters

nOffset is the color offset applied to the resulting palette, between 0 and 255.
nColors is the number of unique colors desired in the resulting palette, between 1 and 256.

Values is the name of a 768-byte array containing 256 sets of RGB color components for the
pixel data in the active virtual buffer. On return, the entries for colors nOffset through
nOffset+nColors-1 will contain the RGB color components for the new palette. Any resulting
unused entries at the beginning or end of the Values array are set to zero.

Return value

none

Restrictions

This function is meaningful only for 256-color virtual buffers.

See also

fg_getdacs(), fg_setclip(), fg_setdacs()

274 « Fastgraph 6.0 Reference Manual

fg_restore()

Prototype
C/C++ void fg restore (int xMn, int xMax, int yMn, int yMax);
C# void fg.restore (int xMn, int xMax, int yMn, int yMax);
Delphi procedure fg restore (xMn, xMax, yMn, yMax : integer);

VB Sub fg_ restore (ByvVal xMn As Long, ByVal xMax As Long, ByVal
yMn As Long, ByVal yMax As Long)

VB.NET Sub fg restore (ByVal xMn As |Integer, ByVal xMax As I|nteger,
ByVal yMn As Integer, ByVal yMax As | nteger)

Description

The fg_restore() legacy function copies a rectangular region, defined in screen space, from the
background virtual buffer to the same position in the foreground virtual buffer. As with Fastgraph's
other block transfer functions, no clipping is performed.

Parameters
XMin is the x coordinate of the region's left edge.

xMax is the x coordinate of the region's right edge. It must be greater than or equal to the value of
xMin.

yMin is the y coordinate of the region's top edge.

yMax is the y coordinate of the region's bottom edge. It must be greater than or equal to the value
of yMin.

Return value

When using DirectX, the background and foreground virtual buffers must not be locked.
Restrictions

none

Replaced by
fg_vbcopy()

Fastgraph 6.0 Reference Manual « 275

fg_restorew()

Prototype
C/C++

C#

Delphi
VB

VB.NET

Description

void fg restorew (double xM n, double xMax, double yMn, double
yMax) ;

void fg.restorew (double xM n, double xMax, double yMn, double
yMax) ;

procedure fg restorew (xMn, xMax, yMn, yMax : real);

Sub fg_restorew (ByVal xMn As Doubl e, ByVal xMax As Doubl e,
ByVal yMn As Doubl e, ByVal yMax As Doubl e)

Sub fg_restorew (ByVal xM n As Doubl e, ByVal xMax As Doubl e,
ByVal yMn As Doubl e, ByVal yMax As Doubl e)

The fg_restorew() legacy function copies a rectangular region, defined in 2D world space, from
the background virtual buffer to the same position in the foreground virtual buffer. As with
Fastgraph's other block transfer functions, no clipping is performed.

Parameters

xMin is the world space x coordinate of the region's left edge.

xMax is the world space x coordinate of the region's right edge. It must be greater than or equal
to the value of xMin.

yMin is the world space y coordinate of the region's bottom edge.

yMax is the world space y coordinate of the region's top edge. It must be greater than or equal to
the value of yMin.

Return value

none

Restrictions

none

Replaced by

fg_vbcopy()

276 « Fastgraph 6.0 Reference Manual

fg_revdchb()

Prototype
CIC++
C#
Delphi
VB

VB.NET

Description

void fg revdcb (void *Bitmap, int nWdth, int nHeight);
void fg.revdcb (ref byte Bitmap, int nwdth, int nHeight);
procedure fg revdcb (var Bitmap; nWdth, nHeight : integer);

Sub fg_revdch (Bitmap() As Any, ByVal nWdth As Long, ByVal
nHei ght As Long)

Sub fg_revdch (ByRef Bitmap As Byte, ByVal nWdth As Integer,
ByVal nHei ght As | nteger)

The fg_revdcb() function displays a reversed direct color bitmap, without clipping. The bitmap
will be positioned so that its lower left corner is at the graphics cursor position. Color 0 pixels will
be considered transparent.

For high color virtual buffers, each pixel in the bitmap is a 16-bit (two byte) encoded RGB value.
For true color virtual buffers, each pixel is a 24-bit (three byte) RGB value, stored blue byte first,
then green byte, then red byte. Refer to Chapter 8 of the Fastgraph 6.0 User's Guide for
complete information about direct color bitmaps.

Parameters

Bitmap is the name of the array containing the bitmap.

nWidth is the bitmap width in pixels.

nHeight is the bitmap height in pixels.

Return value

none

Restrictions

This function is meaningful only with direct color virtual buffers.

See also

fg_clipdcb(), fg_drawdchb(), fg_flipdcb(), fg_getdcb(), fg_invdcb(), fg_putdcb(), fg_revimage()

Examples
Dch

Fastgraph 6.0 Reference Manual « 277

fg_revimage()

Prototype
C/C++ void fg revinage (void *Bitmap, int nWdth, int nHeight);
C# void fg.revinage (ref byte Bitmap, int nWdth, int nHeight);
Delphi procedure fg revinage (var Bitmap; nWdth, nHeight : integer);

VB Sub fg_revimage (Bitmap() As Any, ByVal wi dth As Long, ByVal
nHei ght As Long)

VB.NET Sub fg revinage (ByRef Bitmap As Byte, ByVal nWdth As Integer,
ByVal nHei ght As | nteger)

Description

The fg_revimage() function displays a reversed 256-color bitmap, without clipping. The bitmap
will be positioned so that its lower left corner is at the graphics cursor position. Refer to Chapter 8
of the Fastgraph 6.0 User's Guide for complete information about 256-color bitmaps.

Parameters
Bitmap is the name of the array containing the bitmap.
nWidth is the bitmap width in pixels.
nHeight is the bitmap height in pixels.
Return value
none
Restrictions
none
See also

fg_clpimage(), fg_drwimage(), fg_flpimage(), fg_getimage(), fg_invert(), fg_putimage(),
fg_revdch()

Examples
Bitmap, PCXflip

278 « Fastgraph 6.0 Reference Manual

fg_revmask()

Prototype
C/C++ void fg revmask (void *Bitmap, int nRuns, int nWdth);
C# void fg.revmask (ref byte Bitmap, int nRuns, int nWdth);
Delphi procedure fg revmask (var Bitnmap; nRuns, nWdth : integer);

VB Sub fg_revnask (Bitmap() As Any, ByVal nRuns As Long, ByVal
nWdth As Long)

VB.NET Sub fg revmask (ByRef Bitmap As Byte, ByVal nRuns As I|nteger,
ByVal nWdth As Integer)

Description

The fg_revmask() legacy function displays a reversed masking map. The masking map will be
positioned so that its lower left corner is at the graphics cursor position.

Parameters

Bitmap is the name of the array containing the masking map. The masking map is a series of
alternating "protect” and "zero" pixel runs. The "protect" runs leave the corresponding virtual
buffer pixels unchanged, while the "zero" runs set them to color zero. The length of each run
must be between 0 and 255.

nRuns is the number of pixel runs in the masking map.
nWidth is the masking map width in pixels.
Return value
none
Restrictions
none
Replaced by

256-color bitmap functions

Fastgraph 6.0 Reference Manual « 279

fg_rotate()

Prototype
C/C++

C#

Delphi

VB

VB.NET

Description

void fg rotate (void *Source, void *Dest, int nWdth, int
nHei ght, int Angle);

void fg.rotate (ref byte Source, ref byte Dest, int nWdth, int
nHei ght, int Angle);

procedure fg rotate (var Source, Dest; nWdth, nHeight, Angle :
i nteger);

Sub fg rotate (Source() As Any, Dest() As Any, ByVal nWdth As
Long, ByVal nHeight As Long, ByVal Angle As Long)

Sub fg_ rotate (ByRef Source As Byte, ByRef Dest As Byte, ByVal
nWdth As Integer, ByVal nHeight As Integer, ByVal Angle As
I nt eger)

The fg_rotate() function rotates a 256-color bitmap (around its center) by a specified angle.

Parameters

Source is the name of the array containing the 256-color bitmap to be rotated.

Dest is the name of the array that will receive the resulting rotated 256-color bitmap.

nWidth is the Source bitmap width in pixels. It must be greater than zero.

nHeight is the Source bitmap height in pixels. It must be greater than zero.

Angle is the rotation angle, expressed in tenths of degrees and measured counterclockwise from
the positive x axis.

Return value
none

Restrictions
none

See also

fg_rotdcb(), fg_rotsize()

Examples

Rotate

280 « Fastgraph 6.0 Reference Manual

fg_rotate3d()

Prototype
C/C++

C#

Delphi

VB

VB.NET

Description

The fg_rotate3d() legacy function builds a 3D transformation matrix representing an absolute or

void fg rotate3d (long *Transform int Pitch, int Yaw, int
Rol I, int Flag);

void fg.rotate3d (ref int Transform int Pitch, int Yaw, int
Roll, int Flag);

procedure fg rotate3d (var Transform: longint; Pitch, Yaw,
Roll, Flag : integer);

Sub fg rotate3d (Transfornm{) As Long, ByVal Pitch As Long,
ByVal Yaw As Long, ByVal Roll As Long, ByVal Flag As Long)

Sub fg_ rotate3d (ByRef Transform As Integer, ByVal Pitch As
Integer, ByVal Yaw As |Integer, ByVal Roll As Integer, ByVal
Flag As Integer)

relative rotation by the specified 3D coordinates.

Parameters

Transform is the name of the 12-element transformation matrix containing fixed point 3D rotation

and 3D translation values.

Pitch is the counterclockwise rotation about the x axis, expressed in tenths of degrees.

Yaw is the counterclockwise rotation about the y axis, expressed in tenths of degrees.

Roll is the counterclockwise rotation about the z axis, expressed in tenths of degrees.

Flag controls if the rotation is absolute or relative. If Flag is zero, the rotation is absolute and the
specified rotations become the new rotation values in the transformation matrix. If Flag is not
zero, the rotation is relative and the rotation angles are added to the rotation values in the

transformation matrix.

Return value

none

Restrictions

none

Replaced by

Floating point 3D geometry system

Fastgraph 6.0 Reference Manual « 281

fg_rotdch()

Prototype
C/C++ void fg rotdcb (void *Source, void *Dest, int nWdth, int
nHei ght, int Angle);
C# void fg.rotdcb (ref byte Source, ref byte Dest, int nWdth, int
nHei ght, int Angle);
Delphi procedure fg rotdcb (var Source, Dest; nWdth, nHeight, Angle :
i nteger);
VB Sub fg_rotdch (Source() As Any, Dest() As Any, ByVal nWdth As
Long, ByVal nHeight As Long, ByVal Angle As Long)
VB.NET Sub fg rotdcb (ByRef Source As Byte, ByRef Dest As Byte, ByVal
nWdth As Integer, ByVal nHeight As Integer, ByVal Angle As
I nt eger)
Description

The fg_rotdcb() function rotates a direct color bitmap (around its center) by a specified angle.

For high color virtual buffers, each pixel in the bitmaps is a 16-bit (two byte) encoded RGB value.
For true color virtual buffers, each pixel is a 24-bit (three byte) RGB value, stored blue byte first,
then green byte, then red byte.

Parameters

Source is the name of the array containing the direct color bitmap to be rotated.
Dest is the name of the array that will receive the resulting rotated direct color bitmap.
nWidth is the Source bitmap width in pixels. It must be greater than zero.

nHeight is the Source bitmap height in pixels. It must be greater than zero.

Angle is the rotation angle, expressed in tenths of degrees and measured counterclockwise from

the positive x axis.
Return value

none
Restrictions

This function is meaningful only with direct color virtual buffers.
See also

fg_rotate(), fg_rotsize()

282 « Fastgraph 6.0 Reference Manual

fg_rotsize()

Prototype

C/C++ void fg rotsize (int nWdth, int nHeight, int Angle, int
*nNewW dt h, int *nNewHei ght);

C# void fg.rotsize (int nWdth, int nHeight, int Angle, out int
nNewW dt h, out int nNewHei ght);

Delphi procedure fg rotsize (nWdth, nHeight, Angle : integer; var
nNewW dt h, nNewHei ght : integer);

VB Sub fg_rotsize (ByvVal nWdth As Long, ByVal nHeight As Long,
ByVal Angle As Long, nNewWdth As Long, nNewHei ght As Long)

VB.NET Sub fg rotsize (ByVal nWdth As Integer, ByVal nHei ght As
Integer, ByVal Angle As Integer, ByRef nNewNdth As Integer,
ByRef nNewHei ght As | nteger)

Description

The fg_rotsize() function determines the resulting dimensions of a bitmap when rotated by a
given angle.

Parameters
nWidth is the unrotated bitmap width in pixels. It must be greater than zero.
nHeight is the unrotated bitmap height in pixels. It must be greater than zero.

Angle is the rotation angle, expressed in tenths of degrees and measured counterclockwise from
the positive x axis.

nNewWidth receives the rotated bitmap width in pixels.
nNewHeight receives the rotated bitmap height in pixels.
Return value
none
Restrictions
none
See also
fg_rotate(), fg_rotdch()
Examples

Rotate

Fastgraph 6.0 Reference Manual « 283

fg_save()

Prototype
C/C++ void fg save (int xMn, int xMax, int yMn, int yMax);
C# void fg.save (int xMn, int xMax, int yMn, int yMax);
Delphi procedure fg save (xMn, xMax, yMn, yMax : integer);

VB Sub fg_save (ByVal xMn As Long, ByVal xMax As Long, ByVal yMn
As Long, ByVal yMax As Long)

VB.NET Sub fg save (ByVal xMn As |Integer, ByVal xMax As | nteger,
ByVal yMn As Integer, ByVal yMax As | nteger)

Description

The fg_save() legacy function copies a rectangular region, defined in screen space, from the
foreground virtual buffer to the same position in the background virtual buffer. As with Fastgraph's
other block transfer functions, no clipping is performed.

Parameters
XMin is the x coordinate of the region's left edge.

xMax is the x coordinate of the region's right edge. It must be greater than or equal to the value of
xMin.

yMin is the y coordinate of the region's top edge.

yMax is the y coordinate of the region's bottom edge. It must be greater than or equal to the value
of yMin.

Return value
none
Restrictions
When using DirectX, the background and foreground virtual buffers must not be locked.

Replaced by
fg_vbcopy()

284 « Fastgraph 6.0 Reference Manual

fg_savew()
Prototype
C/C++ voi d fg _savew (double xMn, double xMax, double yMn, double

C#

Delphi
VB

VB.NET

Description

yMax) ;

voi d fg.savew (double xMn, double xMax, double yMn, double
yMax) ;

procedure fg savew (xMn, xMax, yMn, yMax : real);

Sub fg_savew (ByVal xMn As Doubl e, ByVal xMax As Doubl e, ByVal
yMn As Doubl e, ByVal yMax As Doubl e)

Sub fg_savew (ByVal xMn As Doubl e, ByVal xMax As Doubl e, ByVal
yMn As Doubl e, ByVal yMax As Doubl e)

The fg_savew() legacy function copies a rectangular region, defined in 2D world space, from the
foreground virtual buffer to the same position in the background virtual buffer. As with Fastgraph's
other block transfer functions, no clipping is performed.

Parameters

xMin is the world space x coordinate of the region's left edge.

xMax is the world space x coordinate of the region's right edge. It must be greater than or equal
to the value of xMin.

yMin is the world space y coordinate of the region's bottom edge.

yMax is the world space y coordinate of the region's top edge. It must be greater than or equal to
the value of yMin.

Return value
none

Restrictions
none

Replaced by

fg_vbcopy()

Fastgraph 6.0 Reference Manual « 285

fg_scale()

Prototype

C/C++ void fg scale (void *Source, void *Dest, int sWdth, int
sHeight, int dWdth, int dHeight);

C# void fg.scale (ref byte Source, ref byte Dest, int sWdth, int
sHeight, int dWdth, int dHeight);
void fg.scale (int pSource, int pDest, int sWdth, int sHeight,
int dWdth, int dHeight);

Delphi procedure fg scale (var Source, Dest; sWdth, sHeight, dwWdth,
dHei ght : integer);

VB Sub fg_scale (Source() As Any, Dest() As Any, ByVal sWdth As
Long, ByVal sHeight As Long, ByVal dWdth As Long, ByVal
dHei ght As Long)

VB.NET Sub fg scale (ByRef Source As Byte, ByRef Dest As Byte, ByVal
sWdth As Integer, ByVal sHeight As Integer, ByVal dWdth As
I nteger, ByVal dHeight As |nteger)
Sub fg_scale (ByVal pSource As Integer, ByVal pDest As I|nteger,
ByVal sWdth As Integer, ByVal sHeight As Integer, ByVal dWdth
As | nteger, ByVal dHeight As Integer)

The second C# and VB.NET declaration allows passing the integer fg_vbaddr() or fg_ddlock()
return values for the Source and Dest parameters. See the discussion of the scaling functions in
Chapter 8 of the Fastgraph 6.0 User's Guide for the conditions under which this is allowed.

Description
The fg_scale() function scales a 256-color bitmap.
Parameters
Source is the name of the array containing the 256-color bitmap to be scaled.
Dest is the name of the array that will receive the resulting scaled bitmap.
sWidth is the Source bitmap width in pixels. It must be greater than zero.
sHeight is the Source bitmap height in pixels. It must be greater than zero.
dWidth is the Dest bitmap width in pixels. It must be greater than zero.
dHeight is the Dest bitmap height in pixels. It must be greater than zero.
Return value
none
Restrictions
The maximum allowable width or height of Source and Dest is 32,768 pixels.
See also
fg_scaledch()
Examples

Scale

286 « Fastgraph 6.0 Reference Manual

fg_scaledch()

Prototype

C/C++ void fg scal edcb (void *Source, void *Dest, int sWdth, int
sHeight, int dWdth, int dHeight);

C# voi d fg.scal edcb (ref byte Source, ref byte Dest, int sWdth,
int sHeight, int dwdth, int dHeight);
voi d fg.scal edcb (int pSource, int pDest, int sWdth, int
sHeight, int dWdth, int dHeight);

Delphi procedure fg scal edcb (var Source, Dest; sWdth, sHeight,
dwdth, dHeight : integer);

VB Sub fg_scal edcb (Source() As Any, Dest() As Any, ByVal sWdth
As Long, ByVal sHeight As Long, ByVal dWdth As Long, ByVal
dHei ght As Long)

VB.NET Sub fg scal edcb (ByRef Source As Byte, ByRef Dest As Byte,
ByVal sWdth As Integer, ByVal sHeight As Integer, ByVal dWdth
As | nteger, ByVal dHeight As Integer)
Sub fg_scal edcb (ByVal pSource As Integer, ByVal pDest As
Integer, ByVal sWdth As Integer, ByVal sHeight As Integer,
ByVal dWdth As Integer, ByVal dHeight As Integer)

The second C# and VB.NET declaration allows passing the integer fg_vbaddr() or fg_ddlock()
return values for the Source and Dest parameters. See the discussion of the scaling functions in
Chapter 8 of the Fastgraph 6.0 User's Guide for the conditions under which this is allowed.

Description
The fg_scaledcb() function scales a direct color bitmap.

For high color virtual buffers, each pixel in the bitmaps is a 16-bit (two byte) encoded RGB value.
For true color virtual buffers, each pixel is a 24-bit (three byte) RGB value, stored blue byte first,
then green byte, then red byte.

Parameters
Source is the name of the array containing the direct color bitmap to be scaled.
Dest is the name of the array that will receive the resulting scaled direct color bitmap.
sWidth is the Source bitmap width in pixels. It must be greater than zero.
sHeight is the Source bitmap height in pixels. It must be greater than zero.
dWidth is the Dest bitmap width in pixels. It must be greater than zero.
dHeight is the Dest bitmap height in pixels. It must be greater than zero.
Return value
none
Restrictions
This function is meaningful only with direct color virtual buffers.
The maximum allowable width or height of Source and Dest is 32,768 pixels.
See also

fg_scale()

Fastgraph 6.0 Reference Manual « 287

fg_scroll()

Prototype

C/C++ void fg scroll (int xMn, int xMax, int yMn, int yMax, int
nJunp, int nType);

C# void fg.scroll (int xMn, int xMax, int yMn, int yMax, int
nJunp, int nType);

Delphi procedure fg scroll (xMn, xMax, yMn, yMax, nJunp, nType :
i nteger);

VB Sub fg_scroll (ByvVal xMn As Long, ByVal xMax As Long, ByVal
yMn As Long, ByVal yMax As Long, ByVal nJunp As Long, ByVal
nType As Long)

VB.NET Sub fg scroll (ByvVal xMn As Integer, ByVal xMax As |nteger,
ByVal yMn As Integer, ByVal yMax As |nteger, ByVal nJunp As
I nteger, ByVal nType As Integer)

Description

The fg_scroll() function vertically scrolls a region of the active virtual buffer. The scrolling may be
done either up or down, using either an end-off or circular method. The region is defined in
screen space.

Parameters
XMin is the x coordinate of the scrolling region's left edge.

xMax is the x coordinate of the scrolling region's right edge. It must be greater than or equal to
the value of xMin.

yMin is the y coordinate of the scrolling region's top edge.

yMax is the y coordinate of the scrolling region's bottom edge. It must be greater than or equal to
the value of yMin.

nJump is the number of pixels to jump between each scrolling iteration. If nJump is negative, the
region will scroll toward the top of the virtual buffer. If nJump is positive, the region will scroll
toward the bottom.

nType specifies the type of scroll. If nType is zero, rows that scroll off one edge appear at the
opposite edge, thus producing a circular scrolling effect. If nType is any other value, rows that
scroll off one edge will be replaced at the opposite edge by lines of the current color.

Return value
none
Restrictions

Circular scrolling uses part of the background virtual buffer, as defined in the most recent call to
fg_sethpage(), as a temporary workspace.

When using DirectX, the active virtual buffer must not be locked. The same applies to the
background virtual buffer if using circular scrolling.

See also

fg_setcolor(), fg_setcolorrgb(), fg_sethpage()

288 « Fastgraph 6.0 Reference Manual

fg_scroll() (continued)

Examples

Scroller

Fastgraph 6.0 Reference Manual « 289

fg_setalphal)

Prototype
C/C++ void fg_setal pha (int A pha);
C# voi d fg.setal pha (int A pha);
Delphi procedure fg setal pha (Al pha : integer);
VB Sub fg_setal pha (ByVal Al pha As Long)
VB.NET Sub fg setal pha (ByVal Al pha As Integer)
Description

The fg_setalpha() legacy function defines the alpha channel value that fg_ setdacs() and
fg_setrgb() use when updating a 32-bit true color virtual palette. The default alpha channel value
is zero.

Parameters

Alpha is the alpha channel value. Its value must be between 0 and 255.
Return value

none
Restrictions

The alpha channel is meaningful only with a 32-bit true color virtual palette.

290 Fastgraph 6.0 Reference Manual

fg_setangle()

Prototype
C/C++ void fg_setangl e (double Angle);
C# voi d fg.setangl e (double Angle);
Delphi procedure fg setangle (Angle : real);
VB Sub fg_setangle (ByVal Angle As Doubl e)
VB.NET Sub fg setangle (ByVal Angle As Doubl e)
Description

The fg_setangle() function defines the angle of rotation at which software characters are
displayed. If a program draws software characters before calling fg_setangle(), Fastgraph will
use its default angle of zero degrees (that is, horizontal).

Parameters

Angle is the angle of rotation, expressed in degrees and measured counterclockwise from the
positive x axis.

Return value
none
Restrictions

Before using this function, you must use fg_initw() and fg_setworld() to establish a 2D world
space coordinate system.

See also

fg_initw(), fg_setratio(), fg_setsize(), fg_setsizew(), fg_setworld(), fg_swchar(), fg_swlength(),
fg_swtext()

Fastgraph 6.0 Reference Manual « 291

fg_setclip()

Prototype
C/C++ void fg setclip (int xMn, int xMax, int yMn, int yMax);
C# void fg.setclip (int xMn, int xMax, int yMn, int yMax);
Delphi procedure fg setclip (xMn, xMax, yMn, yMax : integer);

VB Sub fg_setclip (ByvVal xMn As Long, ByVal xMax As Long, ByVal
yMn As Long, ByVal yMax As Long)

VB.NET Sub fg setclip (ByVal xMn As |Integer, ByVal xMax As |nteger,
ByVal yMn As Integer, ByVal yMax As | nteger)

Description

The fg_setclip() function defines the active virtual buffer's clipping region in screen space. The
clipping region is a rectangular area outside of which certain graphics are suppressed.

Parameters
XMin is the screen space x coordinate of the clipping region's left edge.

xMax is the screen space x coordinate of the clipping region's right edge. It must be greater than
or equal to the value of xMin.

yMin is the screen space y coordinate of the clipping region's top edge.

yMax is the screen space y coordinate of the clipping region's bottom edge. It must be greater
than or equal to the value of yMin.

Return value
none
Restrictions
none
See also
fg_getclip(), fg_setclipw()
Examples

Rainbow

292 « Fastgraph 6.0 Reference Manual

fg_setclipw()

Prototype
C/C++ void fg setclipw (double xM n, double xMax, double yM n,
yMax) ;
C# void fg.setclipw (double xM n, double xMax, double yM n,
yMax) ;

Delphi procedure fg setclipw (xMn, xMax, yMn, yMax : real);

VB Sub fg_setclipw (ByVal xMn As Doubl e, ByVal xMax As Doubl e,

ByVal yMn As Doubl e, ByVal yMax As Doubl e)

VB.NET Sub fg setclipw (ByVal xMn As Doubl e, ByVal xMax As Doubl e,

ByVal yMn As Doubl e, ByVal yMax As Doubl e)

Description

The fg_setclipw() function defines the active virtual buffer's clipping region in 2D world space.
The clipping region is a rectangular area outside of which certain graphics are suppressed.

Parameters

XMin is the world space x coordinate of the clipping region's left edge.

xMax is the world space x coordinate of the clipping region's right edge. It must be greater than or

equal to the value of xMin.

yMin is the world space y coordinate of the clipping region's bottom edge.

yMax is the world space y coordinate of the clipping region's top edge. It must be greater than or

equal to the value of yMin.
Return value

none
Restrictions

none

See also

fg_getclip(), fg_setclip()

Fastgraph 6.0 Reference Manual « 293

fg_setcolor()

Prototype
C/C++ void fg setcolor (int nColor);
C# void fg.setcolor (int nColor);
Delphi procedure fg setcolor (nColor : integer);
VB Sub fg_setcolor (ByVal nColor As Long)

VB.NET Sub fg setcolor (ByVal nCol or As Integer)
Description

The fg_setcolor() function establishes the current color.
Parameters

nColor defines the current color. For 256-color virtual buffers, nColor must be between 0 and
255. For high color virtual buffers, nColor must be a 16-bit encoded RGB value; for true color
virtual buffers, it must be a 32-bit xRGB value.

Return value
none
Restrictions
none
See also
fg_colors(), fg_getcolor(), fg_maprgb(), fg_realize(), fg_setcolorrgb()
Examples

Nearly all the example programs use this function.

294 « Fastgraph 6.0 Reference Manual

fg_setcolorrgb()

Prototype
C/C++ void fg setcolorrgb (int Red, int Green, int Blue);
C# void fg.setcolorrgb (int Red, int Green, int Blue);
Delphi procedure fg setcolorrgb (Red, Geen, Blue : integer);

VB Sub fg_setcolorrgb (ByVal Red As Long, ByVal Green As Long,
ByVal Bl ue As Long)

VB.NET Sub fg setcolorrgb (ByVal Red As Integer, ByVal Geen As
I nteger, ByVal Blue As |nteger)

Description

The fg_setcolorrgb() function establishes the current color by specifying its RGB components.
When used with a 256-color virtual buffer, fg_setcolorrgb() will use the closest matching color in
the logical palette.

Parameters

Red, Green, and Blue respectively specify the color's red, green, and blue components. These
values must each be between 0 and 255; increasing values produce more intense colors.

Return value
none
Restrictions
none
See also
fg_maprgb(), fg_setcolor(), fg_setrgh()
Examples
Colors, Columns, Cube, Dcb, FirstDD

Fastgraph 6.0 Reference Manual « 295

fg_setdacs()

Prototype
C/C++ void fg setdacs (int nStart, int nCount, void *Val ues);
C# void fg.setdacs (int nStart, int nCount, ref byte Val ues);
Delphi procedure fg setdacs (nStart, nCount : integer; var Val ues);
VB Sub fg_setdacs (ByVal nStart As Long, ByVal nCount As Long,

Val ues() As Any)

VB.NET Sub fg setdacs (ByVal nStart As Integer, ByVal nCount As
I nteger, ByRef Values As Byte)

Description

The fg_setdacs() function defines the red, green, and blue color components of a consecutive
group of colors in the active logical palette or virtual palette. Defining many colors with
fg_setdacs() is faster than doing so individually with fg_setrgb().

Parameters
nStart is the starting color number, between 0 and 255.

nCount is the number of consecutive colors to define, between 1 and 256. The sum of nStart and
nCount cannot exceed 256.

Values is the name of the array containing the color components. The first three bytes of this
array must contain the red, green, and blue components for color nStart, the next three bytes
contain the components for color nStart+1, and so forth. Each color component is a value
between 0 and 255; increasing values produce more intense colors. The size of the Values array
must be at least 3*nCount bytes.

Return value
none
Restrictions
Before calling fg_setdacs(), a logical palette must be defined and realized.
See also
fg_getdacs(), fg_mapdacs(), fg_realize(), fg_setrgh()
Examples

Fade, Rainbow

296 « Fastgraph 6.0 Reference Manual

fg_setdc()

Prototype
C/C++ void fg setdc (HDC hDC);
C# void fg.setdc (IntPtr hDC);
Delphi procedure fg setdc (hDC : HDC);
VB Sub fg_setdc (ByVal hDC As Long)

VB.NET Sub fg setdc (ByVal hDC As IntPtr)
Description

The fg_setdc() function establishes a device context for the window's client area. It is usually one
of the first Fastgraph functions called in the WM_CREATE message handler.

Parameters

hDC is a Windows handle to the client area device context, usually obtained with the Windows
API GetDC() function, a .NET framework Graphics object's GetHdc() method, or the Visual Basic
hDC property.

Return value
none

Restrictions
none

Examples

All the example programs use this function.

Fastgraph 6.0 Reference Manual « 297

fg_sethpage()

Prototype
C/C++ voi d fg_sethpage (int hVB);
C# voi d fg.sethpage (int hVB);

Delphi procedure fg sethpage (hVB : integer);

VB Sub fg_sethpage (ByVal hVB As Long)

VB.NET Sub fg sethpage (ByVal hVB As I|nteger)
Description

The fg_sethpage() function establishes the background virtual buffer for save, restore, and
circular scroll operations.

Parameters

hVB is the virtual buffer handle.
Return value

none
Restrictions

none
See also

fg_gethpage(), fg_scroll(), fg_vbopen()
Examples

Scroller

298 « Fastgraph 6.0 Reference Manual

fg_setpage()

Prototype
C/C++ voi d fg _setpage (int hVB);
C# voi d fg.setpage (int hVvB);

Delphi procedure fg setpage (hVB : integer);

VB Sub fg_setpage (ByVal hVB As Long)

VB.NET Sub fg setpage (ByVal hVB As Integer)
Description

The fg_setpage() legacy function establishes the foreground virtual buffer for save and restore
operations.

Parameters

hVB is the virtual buffer handle.
Return value

none
Restrictions

none

Replaced by
fg_vbcopy()

Fastgraph 6.0 Reference Manual « 299

fg_setratio()

Prototype
C/C++ void fg setratio (double Ratio);
C# void fg.setratio (double Ratio);
Delphi procedure fg setratio (Ratio : real);
VB Sub fg_setratio (ByVal Ratio As Doubl e)
VB.NET Sub fg setratio (ByVal Ratio As Doubl e)
Description

The fg_setratio() function defines the aspect ratio for software characters. The aspect ratio is the
ratio of character width to character height. If a program draws software characters before calling
fg_setratio(), Fastgraph will use its default aspect ratio of 1.

Parameters

Ratio is the aspect ratio. It must be greater than zero.
Return value

none
Restrictions

Before using this function, you must use fg_initw() and fg_setworld() to establish a 2D world
space coordinate system.

See also

fg_initw(), fg_setangle(), fg_setsize(), fg_setsizew(), fg_setworld(), fg_swchar(), fg_swlength(),
fg_swtext()

Examples
SWchars

300 « Fastgraph 6.0 Reference Manual

fg_setrgb()

Prototype
C/C++ void fg setrgb (int nColor, int Red, int Green, int Blue);
C# void fg.setrgb (int nColor, int Red, int Green, int Blue);
Delphi procedure fg setrgb (nColor, Red, Geen, Blue : integer);

VB Sub fg_setrgb (ByVal nColor As Long, ByVal Red As Long, ByVal
Green As Long, ByVal Blue As Long)

VB.NET Sub fg setrgb (ByVal nColor As Integer, ByVal Red As Integer,
ByVal Green As Integer, ByVal Blue As Integer)

Description

The fg_setrgb() function defines the red, green, and blue color components for a specified color
in the active logical palette or virtual palette.

Parameters
nColor is the color number, between 0 and 255.

Red, Green, and Blue respectively define the red, green, and blue components of the specified
color. Each color component is a value between 0 and 255; increasing values produce more
intense colors.

Return value

none
Restrictions

Before calling fg_setrgb(), a logical palette must be defined and realized.
See also

fg_getrgb(), fg_mapdacs(), fg_maprgb(), fg_realize(), fg_setdacs()

Fastgraph 6.0 Reference Manual « 301

fg_setsize()

Prototype
C/C++ void fg setsize (int CharSize);
C# void fg.setsize (int CharSize);
Delphi procedure fg setsize (CharSize : integer);
VB Sub fg_setsize (ByVal CharSize As Long)

VB.NET Sub fg setsize (ByVal CharSize As |nteger)
Description

The fg_setsize() function defines the height of software characters in screen space units. If
neither fg_setsize() nor fg_setsizew() is called, Fastgraph will use its default character height of
one 2D world space unit.

Parameters

CharSize is the character height in screen space units.
Return value

none
Restrictions

Before using this function, you must use fg_initw() and fg_setworld() to establish a 2D world
space coordinate system.

See also

fg_initw(), fg_setangle(), fg_setratio(), fg_setsizew(), fg_setworld(), fg_swchar(), fg_swlength(),
fg_swtext()

302 « Fastgraph 6.0 Reference Manual

fg_setsizew()

Prototype
C/C++ voi d fg_setsizew (doubl e CharSi ze);
C# voi d fg.setsizew (doubl e CharSi ze);
Delphi procedure fg setsizew (CharSize : real);
VB Sub fg_setsizew (ByVal CharSize As Doubl e)
VB.NET Sub fg setsizew (ByVal CharSize As Doubl e)
Description

The fg_setsizew() function defines the height of software characters in 2D world space units. If
neither fg_setsize() nor fg_setsizew() is called, Fastgraph will use its default character height of
one world space unit.

Parameters

CharSize is the character height in world space units.
Return value

none
Restrictions

Before using this function, you must use fg_initw() and fg_setworld() to establish a 2D world
space coordinate system.

See also

fg_initw(), fg_setangle(), fg_setratio(), fg_setsize(), fg_setworld(), fg_swchar(), fg_swlength(),
fg_swtext()

Examples
SWchars

Fastgraph 6.0 Reference Manual « 303

fg_setview()

Prototype
C/C++

C#

Delphi

VB

VB.NET

Description

void fg setview (int xMnView, int xMaxView, int yMnView, int
yMaxView, int xMn, int xMax, int yMn, int yMax);

void fg.setview (int xMnView, int xMaxView, int yMnView, int
yMaxView, int xMn, int xMax, int yMn, int yMax);

procedure fg setview (xM nView, xMaxVi ew, yM nVi ew, yMaxVi ew,
XM n, xMax, yMn, yMax : integer);

Sub fg_setview (ByVal xM nView As Long, ByVal xMaxView As Long,
ByVal yM nView As Long, ByVal yMaxView As Long, ByVal xMn As
Long, ByVal xMax As Long, ByVal yMn As Long, ByVal yMax As
Long)

Sub fg_setview (ByVal xM nView As |Integer, ByVal xMaxView As
Integer, ByVal yMnView As Integer, ByVal yMaxView As | nteger,
ByVal xMn As Integer, ByVal xMax As |nteger, ByVal yMn As

I nteger, ByVal yMax As | nteger)

The fg_setview() function defines a 2D viewport with the specified extremes at the specified
screen space paosition.

Parameters

xMinView is the viewport's left edge in viewport units.

xMaxView

is the viewport's right edge in viewport units. Its value must be greater than xMinView.

yMinView is the viewport's top edge in viewport units.

yMaxView
yMinView.

is the viewport's bottom edge in viewport units. Its value must be greater than

XMin is the screen space x coordinate corresponding to the viewport's left edge.

XMax is the screen space x coordinate corresponding to the viewport's right edge. It must be
greater than xMin.

yMin is the screen space y coordinate corresponding to the viewport's top edge.

yMax is the screen space y coordinate corresponding to the viewport's bottom edge. It must be
greater than yMin.

Return value
none

Restrictions
none

See also

fg_getview(), fg_xview(), fg_yview()

304 « Fastgraph 6.0 Reference Manual

fg_setworld()

Prototype
C/C++ void fg setworld (double xM n, double xMax, double yM n,
yMax) ;
C# void fg.setworld (double xM n, double xMax, double yM n,
yMax) ;

Delphi procedure fg setworld (xMn, xMax, yMn, yMax : real);

VB Sub fg_setworld (ByVal xMn As Doubl e, ByVal xMax As Doubl e,

ByVal yMn As Doubl e, ByVal yMax As Doubl e)

VB.NET Sub fg setworld (ByVal xMn As Doubl e, ByVal xMax As Doubl e,

ByVal yMn As Doubl e, ByVal yMax As Doubl e)

Description

The fg_setworld() function defines the 2D world space coordinates that correspond to the edges

of the active virtual buffer.
Parameters

XMin is the world space coordinate of the screen's left edge.

xMax is the world space coordinate of the screen's right edge. It must be greater than the value

of xMin.

yMin is the world space coordinate of the screen's bottom edge.

yMax is the world space coordinate of the screen's top edge. It must be greater than the value of

yMin.
Return value
none

Restrictions

Before using this function, you must call fg_initw() to initialize Fastgraph's 2D world space

parameters.
See also

fg_getworld(), fg_initw(), fg_setview()
Examples

SWchars

Fastgraph 6.0 Reference Manual « 305

fg_shear()

Prototype

C/C++ void fg shear (void *Source, void *Dest, int nWdth, int
nHei ght, int nNewSi ze, int nType);

C# voi d fg.shear (ref byte Source, ref byte Dest, int nWdth, int
nHei ght, int nNewSi ze, int nType);
void fg.shear (int pSource, int pDest, int nWdth, int nHeight,
i nt nNewSi ze, int nType);

Delphi procedure fg shear (var Source, Dest; nWdth, nHeight,
nNewSi ze, nType : integer);

VB Sub fg_shear (Source() As Any, Dest() As Any, ByVal nWdth As
Long, ByVal nHei ght As Long, ByVal nNewSi ze As Long, ByVal
nType As Long)

VB.NET Sub fg shear (ByRef Source As Byte, ByRef Dest As Byte, ByVal
nWdth As Integer, ByVal nHeight As Integer, ByVal nNewSi ze As
I nteger, ByVal nType As Integer)
Sub fg_shear (ByVal pSource As Integer, ByVal pDest As I|nteger,
ByVal nWdth As Integer, ByVal nHeight As Integer, ByVal
nNewSi ze As I nteger, ByVal nType As |nteger)

The second C# and VB.NET declaration allows passing the integer fg_vbaddr() or fg_ddlock()
return values for the Source and Dest parameters. See the discussion of the shearing functions
in Chapter 8 of the Fastgraph 6.0 User's Guide for the conditions under which this is allowed.

Description

The fg_shear() function shears a 256-color bitmap. Shearing may be thought of as anchoring
one corner of an image and stretching the opposite corner horizontally or vertically.

Parameters
Source is the name of the array containing the 256-color bitmap to be sheared.
Dest is the name of the array that will receive the resulting sheared bitmap.
nWidth is the Source bitmap width in pixels. It must be greater than zero.
nHeight is the Source bitmap height in pixels. It must be greater than zero.

nNewsSize is the width in pixels (for horizontal shears) or height in pixels (for vertical shears) of
the resulting Dest bitmap. It must be at least as large as the corresponding dimension in the
Source bitmap.

nType is a code indicating the shear type and direction, as shown here:
0 = Horizontal shear to the left (bottom edge is stretched to the right)
1 = Horizontal shear to the right (top edge is stretched to the right)
2 = Vertical shear to the left (left edge is stretched up)
3 = Vertical shear to the right (right edge is stretched up)
Return value

none

306 « Fastgraph 6.0 Reference Manual

fg_shear() (continued)

Restrictions

The maximum allowable width or height of Source and Dest is 32,768 pixels.
See also

fg_sheardchb()
Examples

Scale

Fastgraph 6.0 Reference Manual « 307

fg_sheardch()

Prototype

C/C++ voi d fg sheardcb (void *Source, void *Dest, int nWdth, int
nHei ght, int nNewSi ze, int nType);

C# voi d fg.sheardcb (ref byte Source, ref byte Dest, int nWdth,
int nHeight, int nNewSi ze, int nType);
voi d fg.sheardcb (int pSource, int pDest, int nWdth, int
nHei ght, int nNewSi ze, int nType);

Delphi procedure fg sheardcb (var Source, Dest; nWdth, nHeight,
nNewSi ze, nType : integer);

VB Sub fg_sheardcb (Source() As Any, Dest() As Any, ByVal nWdth
As Long, ByVal nHeight As Long, ByVal nNewSi ze As Long, ByVal
nType As Long)

VB.NET Sub fg sheardcb (ByRef Source As Byte, ByRef Dest As Byte,
ByVal nWdth As Integer, ByVal nHeight As Integer, ByVal
nNewSi ze As I nteger, ByVal nType As |nteger)

Sub fg_sheardcb (ByVal pSource As Integer, ByVal pDest As
Integer, ByVal nWdth As Integer, ByVal nHeight As Integer,
ByVal nNewSi ze As Integer, ByVal nType As Integer)

The second C# and VB.NET declaration allows passing the integer fg_vbaddr() or fg_ddlock()
return values for the Source and Dest parameters. See the discussion of the shearing functions
in Chapter 8 of the Fastgraph 6.0 User's Guide for the conditions under which this is allowed.

Description

The fg_sheardcb() function shears a direct color bitmap. Shearing may be thought of as
anchoring one corner of an image and stretching the opposite corner horizontally or vertically.

For high color virtual buffers, each pixel in the bitmaps is a 16-bit (two byte) encoded RGB value.
For true color virtual buffers, each pixel is a 24-bit (three byte) RGB value, stored blue byte first,
then green byte, then red byte.

Parameters
Source is the name of the array containing the direct color bitmap to be sheared.
Dest is the name of the array that will receive the resulting sheared direct color bitmap.
nWidth is the Source bitmap width in pixels. It must be greater than zero.
nHeight is the Source bitmap height in pixels. It must be greater than zero.

nNewsSize is the width in pixels (for horizontal shears) or height in pixels (for vertical shears) of
the resulting Dest bitmap. It must be at least as large as the corresponding dimension in the
Source bitmap..

nType is a code indicating the shear type and direction, as shown here:
0 = Horizontal shear to the left (bottom edge is stretched to the right)
1 = Horizontal shear to the right (top edge is stretched to the right)
2 = Vertical shear to the left (left edge is stretched up)
3 = Vertical shear to the right (right edge is stretched up)

308 « Fastgraph 6.0 Reference Manual

fg_sheardchb() (continued)

Return value

none
Restrictions

This function is meaningful only with direct color virtual buffers.

The maximum allowable width or height of Source and Dest is 32,768 pixels.
See also

fg_shear()

Fastgraph 6.0 Reference Manual « 309

fg_showavi()

Prototype
C/C++ int fg showavi (char *FileName, int nCount, int Flags);
C# int fg.showavi (string FileNane, int nCount, int Flags);
Delphi function fg showavi (FileNane : string; nCount, Flags :
i nteger) : integer;
VB Function fg_showavi (ByVal FileNane As String, ByVal nCount As

Long, ByVal Flags As Long) As Long

VB.NET Function fg showavi (ByVal FileNane As String, ByVal nCount As
Integer, ByVal Flags As Integer) As Integer

Description

The fg_showavi() function plays an animation sequence from an AVI file. Each frame in the AVI
file is played in the active virtual buffer and then scaled to fit the client area.

Parameters

FileName is the name of the AVI file. A device and path name may be included as part of the file
name. The file name must be terminated by a zero byte.

nCount is the number of times to play the AVI image. If count is zero, the AVI plays continuously.
You can stop the AVI play at any time by pressing the Escape key.

Flags is a series of flags that controls how the AVI is played:

Flag Meaning

FG_AT_XY If specified, play the AVI file relative to the current graphics
position. If not, play it relative to (0,0).

FG_IGNOREAVIPALETTE If specified, play the AVI file using the current palette. If not,
use the palette values stored in the AVI file. Not meaningful for
high color or true color AVI files.

FG_NODELAY If specified, play the AVI file with no delay between frames. If
not, delay between frames as specified in the AVI header.

Return value
0 = AVI file opened successfully

- 1 = The specified file does not exist

- 2 = The specified file is not an AVI file

- 3 = Error initializing the AVI video stream

- 4 = Error allocating memory

- 5 = The codec needed for the specified AVI file is not available
Restrictions

When using DirectX, the active virtual buffer must not be locked.
See also

fg_avihead(), fg_aviplay(), fg_avisize(), fg_realize()

310 « Fastgraph 6.0 Reference Manual

fg_showavi() (continued)

Examples

Image

Fastgraph 6.0 Reference Manual « 311

fg_showbmp()

Prototype
C/C++ int fg _showbnp (char *Fil eName, int Flags);
C# int fg.showbnmp (string FileNanme, int Flags);
Delphi function fg_showbnp (FileNanme : string; Flags : integer)
i nt eger;
VB Function fg_showbnp (ByVal FileNane As String, ByVal Flags As

Long) As Long

VB.NET Function fg showonp (ByVal FileNane As String, ByVal Flags As
I nteger) As Integer

Description
The fg_showbmp() function displays a BMP file.

For 256-color virtual buffers, 256-color BMP files are reduced to the 236 non-system colors if
color reduction is enabled. 16-color and monochrome BMP files are always remapped to colors
10 to 25 to avoid conflicts with the system colors.

Parameters

FileName is the name of the BMP file. A device and path nhame may be included as part of the file
name. The file name must be terminated by a null character (that is, a zero byte).

Flags is a series of flags that controls how the image is displayed:

Flag Meaning

FG_AT_XY If specified, display the image relative to the current graphics
position. If not, display the image relative to (0,0).

FG_IGNOREPALETTE If specified, display the image using the current palette. If not,
use the palette values stored in the BMP file. Not meaningful for
24-bit BMP files.

FG_FROMBUFFER If specified, get the image data from the fg_imagebuf() buffer. If
not, get the image data from the BMP file.
FG_KEEPCOLORS If specified, disable color reduction and remapping. If not, enable

color reduction and remapping to avoid using the Windows
system colors. Not meaningful for 24-bit BMP files.

Return value
0 = Success
1 = The specified file does not exist
2 = The specified file is not a BMP file
3 = The BMP file cannot be loaded into the active virtual buffer
4 = The BMP file is an unsupported RLE BMP file
5 = Error allocating memory
Restrictions

A logical palette must be defined and realized in order to use the palette values stored in the BMP
file.

24-bit BMP files can only be loaded into direct color virtual buffers.

312 « Fastgraph 6.0 Reference Manual

fg_showbmp() (continued)

See also
fg_bmphead(), fg_bmppal(), fg_bmpsize(), fg_imagebuf(), fg_makebmp(), fg_realize()
Examples

Blend, Image, ImgProc, KBdemo, Panner, Prdemo

Fastgraph 6.0 Reference Manual « 313

fg_showflic()

Prototype
C/C++ int fg showflic (char *FileNane, int nCount, int Flags);
C# int fg.showflic (string FileNane, int nCount, int Flags);
Delphi function fg showflic (FileNane : string; nCount, Flags :
i nteger) : integer;
VB Function fg_showflic (ByVal FileNane As String, ByVal nCount As

Long, ByVal Flags As Long) As Long

VB.NET Function fg showflic (ByVal FileNane As String, ByVal nCount As
Integer, ByVal Flags As Integer) As Integer

Description

The fg_showflic() function plays an animation sequence from an FLI or FLC file (collectively
called flic files). Each frame in the flic file is played in the active virtual buffer and then scaled to fit
the client area. For 256-color virtual buffers, flic files are reduced to the 236 non-system colors if
color reduction is enabled.

Parameters

FileName is the name of the flic file. A device and path name may be included as part of the file
name. The file name must be terminated by a zero byte.

nCount is the number of times to play the flic image. If count is zero, the flic plays continuously.
You can stop the flic play at any time by pressing the Escape key.

Flags is a series of flags that controls how the image is played:

Flag Meaning

FG_AT_XY If specified, play the flic file relative to the current graphics
position. If not, play it relative to (0,0).

FG_IGNOREFLICPALETTE If specified, play the flic file using the current palette. If not,
use the palette values stored in the flic file.

FG_FROMBUFFER If specified, get the image data from the fg_imagebuf()
buffer. If not, get the image data from the flic file.
FG_KEEPCOLORS If specified, disable color reduction and remapping. If not,

enable color reduction and remapping to avoid using the
Windows system colors.

FG_NODELAY If specified, play the flic file with no delay between frames. If
not, delay between frames as specified in the flic header.

Return value
0 = Success
1 = The specified file does not exist
2 = The specified file is not a flic file
Restrictions

A logical palette must be defined and realized in order to use the palette values stored in the flic
file.

When using DirectX, the active virtual buffer must not be locked.

314 « Fastgraph 6.0 Reference Manual

fg_showflic() (continued)

See also
fg_flichead(), fg_flicplay(), fg_flicsize(), fg_imagebuf(), fg_realize()
Examples

Image

Fastgraph 6.0 Reference Manual « 315

fg_showjpeg()

Prototype
C/C++ int fg_show peg (char *FileNane, int Flags);
C# int fg.show peg (string FileNane, int Flags);
Delphi function fg_show peg (FileName : string; Flags : integer)
i nt eger;
VB Function fg_showj peg (ByVal FileNane As String, ByVal Flags As

Long) As Long

VB.NET Function fg show peg (ByVal FileNanme As String, ByVal Flags As
I nteger) As Integer

Description

The fg_showjpeg() function displays a JPEG file. The JPEG image can be either grayscale or
color, but it must be a baseline JPEG file. Baseline JPEG files use Huffman encoding and cannot
use the progressive, hierarchical, or lossless compression and storage modes.

Parameters

FileName is the name of the JPEG file. It may include a path specification and must be
terminated by a zero byte.

Flags is a series of flags that controls how the image is displayed:

Flag Meaning

FG_AT_XY If specified, display the image relative to the current graphics
position. If not, display the image relative to (0,0).

FG_FROMBUFFER If specified, get the image data from the fg_imagebuf() buffer. If
not, get the image data from the JPEG file.

Return value
0 = Success
1 = The specified file does not exist
2 = The specified file is not a JPEG file
3 = The specified file is not a baseline JPEG file or does not have a valid JPEG structure
4 = Error allocating memory
Restrictions
This function is meaningful only with direct color virtual buffers.
See also
fg_imagebuf(), fg_jpeghead(), fg_jpegsize()
Examples

Image, ImgProc

316 « Fastgraph 6.0 Reference Manual

fg_showpcx()

Prototype
C/C++ int fg _showpcx (char *Fil eName, int Flags);
C# int fg.showpcx (string FileNane, int Flags);
Delphi function fg_showpcx (FileNane : string; Flags : integer)
i nteger;
VB Function fg_showpcx (ByVal FileNane As String, ByVal Flags As
Long) As Long
VB.NET Function fg showpcx (ByVal FileNane As String, ByVal Flags As
I nteger) As Integer
Description

The fg_showpcx() function displays a PCX file.

For 256-color virtual buffers, 256-color PCX files are reduced to the 236 non-system colors if
color reduction is enabled. 16-color and monochrome PCX files are always remapped to colors

10 to 25 to avoid conflicts with the system colors.

Parameters

FileName is the name of the PCX file. A device and path name may be included as part of the file

name. The file name must be terminated by a null character (that is, a zero byte).

Flags is a series of flags that controls how the image is displayed:

Flag

Meaning

FG_AT_XY If specified, display the image relative to the current graphics

position. If not, display the image at the position indicated in PCX
header.

FG_IGNOREPALETTE If specified, display the image using the current palette. If not,

FG_FROMBUFFER

FG_KEEPCOLORS

use the palette values stored in the PCX file. Not meaningful for
24-bit PCX files.

If specified, get the image data from the fg_imagebuf() buffer. If
not, get the image data from the PCX file.

If specified, disable color reduction and remapping. If not, enable
color reduction and remapping to avoid using the Windows
system colors. Not meaningful for 24-bit PCX files.

Return value

0 = Success

1 = The specified file does not exist
2 = The specified file is not a PCX file

3 = The PCX file cannot be loaded into the active virtual buffer

4 = Error allocating memory

Restrictions

A logical palette must be defined and realized in order to use the palette values stored in the PCX

file.

24-bit PCX files can only be loaded into direct color virtual buffers.

Fastgraph 6.0 Reference Manual « 317

fg_showpcx() (continued)

See also

fg_imagebuf(), fg_makepcx(), fg_pcxhead(), fg_pcxpal(), fg_pcxrange(), fg_pcxsize(), fg_realize()
Examples

CBdemo, Fade, Fishtank, Image, ImgProc, PCXflip, TMcube, TMcubeX

318 « Fastgraph 6.0 Reference Manual

fg_showppr()

Prototype
C/C++ int fg_showppr (char *FileNane, int nWdth);
C# int fg.showppr (string FileNane, int nWdth);
Delphi function fg_showpr (FileName : string; nWdth : integer)
i nt eger;
VB Function fg_showppr (ByVal FileNane As String, ByVal nwdth As

Long) As Long

VB.NET Function fg showppr (ByVal FileNane As String, ByVal nWdth As
I nteger) As Integer

Description

The fg_showppr() legacy function displays a packed pixel run (PPR) file. The image will be
positioned so that its lower left corner is at the graphics cursor position in the active virtual buffer.

Parameters

FileName specifies the name of the PPR file. A device and path name may be included as part of
the file name. The file name must be terminated by a zero byte.

nWidth is the image width in pixels. It must be greater than zero.
Return value

0 = Success

1 = The specified file does not exist
Restrictions

none
Replaced by

BMP and PCX display functions

Fastgraph 6.0 Reference Manual « 319

fg_showspr()

Prototype
CIC++
C#
Delphi

VB

VB.NET

Description

int fg_showspr (char *FileNane, int nWdth);
int fg.showspr (string FileNane, int nWdth);

function fg showspr (FileNane : string; nWdth : integer)
i nteger;

Function fg_showspr (ByVal FileNane As String, ByVal nwdth As
Long) As Long

Function fg_showspr (ByVal FileNane As String, ByVal nWdth As
I nteger) As Integer

The fg_showspr() legacy function displays a standard pixel run (SPR) file. The image will be
positioned so that its lower left corner is at the graphics cursor position in the active virtual buffer.

Parameters

FileName specifies the name of the SPR file. A device and path name may be included as part of
the file name. The file name must be terminated by a zero byte.

nWidth is the image width in pixels. It must be greater than zero.

Return value

0 = Success

1 = The specified file does not exist

Restrictions

none

Replaced by

BMP and PCX display functions

320 « Fastgraph 6.0 Reference Manual

fg_stall()

Prototype
C/C++ void fg stall (int nDel ay);
C# void fg.stall (int nDelay);
Delphi procedure fg stall (nDelay : integer);
VB Sub fg_stall (ByVal nDelay As Long)
VB.NET Sub fg stall (ByVal nDelay As |nteger)
Description

The fg_stall() function delays a program's execution for a given number of processor-specific
delay units. You can use fg_measure() to obtain the number of delay units per clock tick for the
system being used.

Parameters
nDelay is the number of delay units to wait.
Return value
none
Restrictions
none
See also

fg_measure(), fg_waitfor()

Fastgraph 6.0 Reference Manual « 321

fg_swchar()

Prototype
C/C++ void fg swchar (char *s, int n, int Justify);
C# void fg.swchar (string s, int n, int Justify);
Delphi procedure fg swchar (s : string; n, Justify : integer);
VB Sub fg_swchar (ByVal s As String, ByVal n As Long, ByVal

Justify As Long)

VB.NET Sub fg swchar (ByVal s As String, ByVal n As Integer, ByVal
Justify As |nteger)

Description

The fg_swchar() function displays a string of software characters in the current color. The string
may be left justified, centered, or right justified relative to the graphics cursor.

Parameters

s is the sequence of characters to display. It may contain special operators, as summarized in the
following table.

Operator Meaning

\ Switch to other font
\ A Superscript the next character
\v Subscript the next character

Begin underlining characters until another
underscore character is encountered

n is the number of characters in s, including any special operator characters.

Justify determines how s is positioned relative to the current position. If Justify is negative, s is left
justified; if it is zero, s is centered,; if it is positive, s is right justified.

Return value
none
Restrictions

Before using this function, you must use fg_initw() and fg_setworld() to establish a 2D world
space coordinate system.

See also

fg_initw(), fg_setangle(), fg_setratio(), fg_setsize(), fg_setsizew(), fg_setworld(), fg_swlength(),
fg_swtext()

Examples
SWchars

322 « Fastgraph 6.0 Reference Manual

fg_swlength()

Prototype
C/C++ doubl e fg swength (char *s, int n);
C# double fg.swength (string s, int n);
Delphi function fg swength (s : string; n: integer) : real;
VB Function fg swength (ByVal s As String, ByVal n As Long) As
Doubl e
VB.NET Function fg swength (ByVal s As String, ByVal n As Integer) As
Doubl e
Description

The fg_swlength() function computes the length of a string of software characters.
Parameters

s is the sequence of characters for which to compute the length. It may contain special operators
used by the fg_swchar() and fg_swtext() functions.

n is the number of characters in s, including any special operator characters.
Return value

The length of s, in 2D world space units.
Restrictions

Before using this function, you must use fg_initw() and fg_setworld() to establish a 2D world
space coordinate system.

See also

fg_initw(), fg_setangle(), fg_setratio(), fg_setsize(), fg_setsizew(), fg_setworld(), fg_swchar(),
fg_swtext()

Fastgraph 6.0 Reference Manual « 323

fg_swtext()

Prototype
C/C++ void fg swext (char *s, int n, int Justify);
C# void fg.swext (string s, int n, int Justify);
Delphi procedure fg swext (s : string; n, Justify : integer);

VB Sub fg_swext (ByVal s As String, ByVal n As Long, ByVal
Justify As Long)

VB.NET Sub fg swtext (ByVal s As String, ByVal n As Integer, ByVal
Justify As |nteger)

Description

The fg_swtext() function is a scaled down version of fg_swchar(). It does not include the
alternate font character definitions and thus requires less memory than fg_swchar().

Parameters

s is the sequence of characters to display. It may contain special operators, as summarized in the
following table.

Operator Meaning

\ A Superscript the next character

\v Subscript the next character
Begin underlining characters until another
underscore character is encountered

n is the number of characters in s, including any special operator characters.

Justify determines how s is positioned relative to the current position. If Justify is negative, s is left
justified; if it is zero, s is centered; if it is positive, s is right justified.

Return value
none
Restrictions

Before using this function, you must use fg_initw() and fg_setworld() to establish a 2D world
space coordinate system.

See also

fg_initw(), fg_setangle(), fg_setratio(), fg_setsize(), fg_setsizew(), fg_setworld(), fg_swchar(),
fg_swlength()

324 « Fastgraph 6.0 Reference Manual

fg_tcdefine()

Prototype
C/C++ void fg tcdefine (int nindex, int nAttribute);
C# void fg.tcdefine (int nlndex, int nAttribute);
Delphi procedure fg tcdefine (nlndex, nAttribute : integer);
VB Sub fg_tcdefine (ByVal nlndex As Long, ByVal nAttribute As
Long)
VB.NET Sub fg tcdefine (ByVal nlndex As Integer, ByVal nAttribute As
I nt eger)
Description

The fg_tcdefine() function defines the transparency attribute of a color for use with
fg_vbtccopy().

Parameters
nindex is the color being defined, between 0 and 255.

nAttribute is the transparency attribute for the color. If the attribute is 0, the specified color will be
opaque (non-transparent). If it is any other value, fg_vbtccopy() will treat the color as
transparent.

Return value
none
Restrictions
none
See also
fg_vbtccopy(), fg_vbtzcopy()
Examples
VBdemo

Fastgraph 6.0 Reference Manual « 325

fg_tcmask()

Prototype
C/C++ void fg tcmask (int Mask);
C# void fg.tcmask (int Mask);
Delphi procedure fg tcnask (Mask : integer);
VB Sub fg_tcmask (ByVal Mask As Long)
VB.NET Sub fg tcnask (ByVal Mask As | nteger)
Description

The fg_tcmask() legacy function defines which of the first 16 color values fg_tcxfer() and

fg_vbtccopy() will consider transparent. You must use fg_tcdefine() to control the transparency
of colors 17 to 255.

Parameters

Mask is a 16-bit mask, where each bit indicates whether or not the corresponding color value is
transparent. For example, if bit O (the rightmost bit) is 1, then color 0 will be transparent. If bit O is
0, color 0 will not be transparent.

Return value
none

Restrictions
none

Replaced by
fg_tcdefine()

326 « Fastgraph 6.0 Reference Manual

fg_tcxfer()

Prototype

C/C++ void fg texfer (int xMn, int xMax, int yMn, int yMax, int
xNew, int yNew, int Source, int Dest);

C# void fg.texfer (int xMn, int xMax, int yMn, int yMax, int
xNew, int yNew, int Source, int Dest);

Delphi procedure fg tcxfer (xMn, xMax, yMn, yMax, xNew, yNew,
Sour ce, Dest i nteger);

VB Sub fg_tcxfer (ByVal xMn As Long, ByvVal xMax As Long, ByVal
yMn As Long, ByVal yMax As Long, ByVal xNew As Long, ByVal
yNew As Long, ByVal Source As Long, ByVal Dest As Long)

VB.NET Sub fg tcxfer (ByVal xMn As Integer, ByVal xMax As |nteger,
ByVal yMn As Integer, ByVal yMax As |nteger, ByVal xNew As
I nteger, ByVal yNew As Integer, ByVal Source As Integer, ByVal
Dest As Integer)

Description

The fg_tcxfer() legacy function is identical to fg_vbtccopy(). It copies a rectangular region from
one virtual buffer to another, or to a non-overlapping region in the same virtual buffer. It excludes
any pixels whose color is transparent. As with Fastgraph's other block transfer functions, no
clipping is performed. The fg_tcdefine() and fg_tcmask() functions define which colors are

transparent.

Parameters

XMin is the x coordinate of the source region's left edge.

xMax is the x coordinate of the source region's right edge. It must be greater than or equal to the

value of xMin.

yMin is the y coordinate of the source region's top edge.

yMax is the y coordinate of the source region's bottom edge. It must be greater than or equal to

the value of yMin.

xNew is the x coordinate of the destination region's left edge.

yNew is the y coordinate of the destination region's bottom edge.

Source is the handle of the virtual buffer containing the source region.

Dest is the handle of the virtual buffer for the destination region.

Return value
none

Restrictions

The source and destination virtual buffers must be the same color depth.

If Source and Dest reference the same virtual buffer, the source and destination regions must not

overlap.
Replaced by
fg_vbtccopy()

Fastgraph 6.0 Reference Manual « 327

fg_texmap()

Prototype

C/C++ void fg texmap (int *xyArray, void *uvArray, int n);

C# void fg.texmap (ref int xyArray, ref int uvArray, int n);
void fg.texmap (ref int xyArray, ref float uvArray, int n);

Delphi procedure fg texmap (var xyArray : integer; var uvArray; n :
i nteger);

VB Sub fg_texmap (xyArray() As Long, uvArray() As Any, ByVal n As
Long)

VB.NET Sub fg texmap (ByRef xyArray As Integer, ByRef uvArray As
Integer, ByVal n As Integer)
Sub fg_texmap (ByRef xyArray As |Integer, ByRef uvArray As
Single, ByVal n As Integer)

Description

The fg_texmap() function draws a projected linear texture-mapped convex polygon in screen
space, with 2D clipping and automatic backface removal. This function is called internally by
Fastgraph's 3D functions and is not usually called directly by applications.

Parameters

xyArray is the name of the array containing the (x,y) coordinate pairs of each vertex in the
destination polygon. The first array element is the x component of the first vertex, the second
element is the y component of the first vertex, the third element is the x component of the second
vertex, and so forth. The vertices must be stored in clockwise order, meaning you would travel
clockwise along the polygon edge to go from one vertex to the next.

uvArray is the name of the array containing the (u,v) texture map coordinates for each (x,y)
coordinate pair in xyArray. The first two uvArray elements represent the (x,y) values at the first
vertex in xyArray, the next two uvArray elements are for the second vertex, and so forth. The
fg_tmunits() function defines if uvArray contains integer or 32-bit floating point values.

n is the number of vertices in each of the above arrays.
Return value

none
Restrictions

If you attempt to fill a non-convex polygon with fg_texmap(), or if the vertices are not stored in
clockwise order, only a portion of the polygon will be filled.

See also

fg_3Dtexturemap(), fg_3Dtexturemapobject(), fg_inside(), fg_polyoff(), fg_texmapp(),
fg_texmappz(), fg_texmapz(), fg_tmdefine(), fg_tmselect(), fg_tmtransparency(), fg_tmunits()

328 « Fastgraph 6.0 Reference Manual

fg_texmapp()

Prototype
C/C++ void fg texmapp (int *xyArray, void *uvArray, double *xyzArray,
int n);
C# void fg.texmapp (ref int xyArray, ref int uvArray, ref double

xyzArray, int n);
void fg.texmapp (ref int xyArray, ref float uvArray, ref double
XyzArray, int n);

Delphi procedure fg texmapp (var xyArray : integer; var uvArray; var
xyzArray : double; n : integer);
VB Sub fg_texmapp (xyArray() As Long, uvArray() As Any, xyzArray()

As Doubl e, ByVal n As Long)

VB.NET Sub fg texmapp (ByRef xyArray As Integer, ByRef uvArray As
I nteger, ByRef xyzArray As Double, ByVal n As |nteger)
Sub fg_texmapp (ByRef xyArray As Integer, ByRef uvArray As
Singl e, ByRef xyzArray As Double, ByVal n As Integer)

Description

The fg_texmapp() function draws a projected perspective corrected texture-mapped convex
polygon in screen space, with 2D clipping and automatic backface removal. This function is
called internally by Fastgraph's 3D functions and is not usually called directly by applications.

Parameters

xyArray is the name of the array containing the (x,y) coordinate pairs of each polygon vertex. The
first array element is the x component of the first vertex, the second element is the y component
of the first vertex, the third element is the x component of the second vertex, and so forth. The
vertices must be stored in clockwise order, meaning you would travel clockwise along the
polygon edge to go from one vertex to the next.

uvArray is the name of the array containing the (u,v) texture map coordinates for each (x,y)
coordinate pair in xyArray. The first two uvArray elements represent the (x,y) values at the first
vertex in xyArray, the next two uvArray elements are for the second vertex, and so forth. The
fg_tmunits() function defines if uvArray contains integer or 32-bit floating point values.

xyzArray is the name of the array containing the 3D (x,y,z) coordinates for each (x,y) coordinate
pair in xyArray. The first three xyzArray elements represent the (x,y,z) values at the first vertex in
xyArray, the next three xyzArray elements are for the second vertex, and so forth. Only the z
coordinates are meaningful in this function.

n is the number of vertices in each of the above arrays.
Return value

none
Restrictions

If you attempt to fill a non-convex polygon with fg_texmapp(), or if the vertices are not stored in
clockwise order, only a portion of the polygon will be filled.

See also

fg_3Dtexturemap(), fg_3Dtexturemapobject(), fg_inside(), fg_polyoff(), fg_texmap(),
fg_texmappz(), fg_texmapz(), fg_tmdefine(), fg_tmselect(), fg_tmspan(), fg_tmtransparency(),
fg_tmunits()

Fastgraph 6.0 Reference Manual « 329

fg_texmappz()

Prototype

C/C++ void fg texmappz (int *xyArray, void *uvArray, double
*xyzArray, int n);

C# void fg.texmappz (ref int xyArray, ref int uvArray, ref double
XyzArray, int n);
void fg.texmappz (ref int xyArray, ref float uvArray, ref
doubl e xyzArray, int n);

Delphi procedure fg texmappz (var xyArray : integer; var uvArray; var
xyzArray : double; n : integer);
VB Sub fg_texmappz (xyArray() As Long, uvArray() As Any,

xyzArray() As Double, ByVal n As Long)

VB.NET Sub fg texmappz (ByRef xyArray As Integer, ByRef uvArray As
I nteger, ByRef xyzArray As Double, ByVal n As |nteger)
Sub fg_texmappz (ByRef xyArray As Integer, ByRef uvArray As
Singl e, ByRef xyzArray As Double, ByVal n As Integer)

Description

The fg_texmappz() function draws a projected z-buffered perspective corrected texture-mapped
convex polygon in screen space, with 2D clipping. This function is called internally by Fastgraph's
3D functions and is not usually called directly by applications.

Parameters

xyArray is the name of the array containing the (x,y) coordinate pairs of each polygon vertex. The
first array element is the x component of the first vertex, the second element is the y component
of the first vertex, the third element is the x component of the second vertex, and so forth.

uvArray is the name of the array containing the (u,v) texture map coordinates for each (x,y)
coordinate pair in xyArray. The first two uvArray elements represent the (x,y) values at the first
vertex in xyArray, the next two uvArray elements are for the second vertex, and so forth. The
fg_tmunits() function defines if uvArray contains integer or 32-bit floating point values.

xyzArray is the name of the array containing the 3D (x,y,z) coordinates for each (x,y) coordinate
pair in xyArray. The first three xyzArray elements represent the (x,y,z) values at the first vertex in
xyArray, the next three xyzArray elements are for the second vertex, and so forth. Only the z
coordinates are meaningful in this function.

n is the number of vertices in each of the above arrays.
Return value

none
Restrictions

If you attempt to fill a non-convex polygon with fg_texmappz(), only a portion of the polygon will
be filled.

See also

fg_3Dtexturemap(), fg_3Dtexturemapobject(), fg_inside(), fg_polyoff(), fg_texmap(),
fg_texmapp(), fg_texmapz(), fg_tmdefine(), fg_tmselect(), fg_tmspan(), fg_tmtransparency(),
fg_tmunits(), fg_zbopen()

330 « Fastgraph 6.0 Reference Manual

fg_texmapz()

Prototype
C/C++ void fg texmapz (int *xyArray, void *uvArray, double *xyzArray,
int n);
C# void fg.texmapz (ref int xyArray, ref int uvArray, ref double

XyzArray, int n);
void fg.texmapz (ref int xyArray, ref float uvArray, ref double
XyzArray, int n);

Delphi procedure fg texmapz (var xyArray : integer; var uvArray; var
xyzArray : double; n : integer);
VB Sub fg_texmapz (xyArray() As Long, uvArray() As Any, xyzArray()

As Doubl e, ByVal n As Long)

VB.NET Sub fg texmapz (ByRef xyArray As Integer, ByRef uvArray As
I nteger, ByRef xyzArray As Double, ByVal n As |nteger)
Sub fg_texmapz (ByRef xyArray As Integer, ByRef uvArray As
Singl e, ByRef xyzArray As Double, ByVal n As Integer)

Description

The fg_texmapz() function draws a projected z-buffered linear texture-mapped convex polygon
in screen space, with 2D clipping. This function is called internally by Fastgraph's 3D functions
and is not usually called directly by applications.

Parameters

xyArray is the name of the array containing the (x,y) coordinate pairs of each polygon vertex. The
first array element is the x component of the first vertex, the second element is the y component
of the first vertex, the third element is the x component of the second vertex, and so forth.

uvArray is the name of the array containing the (u,v) texture map coordinates for each (x,y)
coordinate pair in xyArray. The first two uvArray elements represent the (x,y) values at the first
vertex in xyArray, the next two uvArray elements are for the second vertex, and so forth. The
fg_tmunits() function defines if uvArray contains integer or 32-bit floating point values.

xyzArray is the name of the array containing the 3D (x,y,z) coordinates for each (x,y) coordinate
pair in xyArray. The first three xyzArray elements represent the (x,y,z) values at the first vertex in
xyArray, the next three xyzArray elements are for the second vertex, and so forth. Only the z
coordinates are meaningful in this function.

n is the number of vertices in each of the above arrays.
Return value

none
Restrictions

If you attempt to fill a non-convex polygon with fg_texmapz(), only a portion of the polygon will be
filled.

See also

fg_3Dtexturemap(), fg_3Dtexturemapobject(), fg_inside(), fg_polyoff(), fg_texmap(),
fg_texmapp(), fg_texmappz(), fg_tmdefine(), fg_tmselect(), fg_tmtransparency(), fg_tmunits(),
fg_zbopen()

Fastgraph 6.0 Reference Manual « 331

fg_text()

Prototype

C/C++ void fg text (char *s, int n);
C# void fg.text (string s, int n);
Delphi procedure fg text (s : string;
VB Sub fg_ text (ByVal s As String,
VB.NET Sub fg text (ByVal s As String,

Description

i nteger);

ByVal n As Long)
ByVal n As Integer)

The fg_text() legacy function displays a character string, starting at the text cursor position, using
the current color. The characters are clipped at the client area or virtual buffer edges, not the area
defined with fg_setclip(). On return, the text cursor is positioned just to the right of the last

character displayed.

By default, fg_text() displays strings directly in the window's client area, but you can redirect

strings to the active virtual buffer with fg_fontdc().

Parameters
s is the sequence of characters to display.
n is the number of characters to display from s.

Return value

You cannot direct strings to virtual buffers created with fg_vbdefine().

Restrictions
none

Replaced by
fg_print()

332 « Fastgraph 6.0 Reference Manual

fg_texture()

Prototype
C/C++ void fg texture (void *Texture, int nWdth);
C# void fg.texture (ref byte Texture, int nWdth);
Delphi procedure fg texture (var Texture; nWdth : integer);
VB Sub fg_texture (Texture() As Any, ByVal nWdth As Long)

VB.NET Sub fg texture (ByRef Texture As Byte, ByVal nWdth As | nteger)
Description

The fg_texture() legacy function defines the texture map applied to the destination polygon in
Fastgraph's texture-mapped polygon drawing functions.

Parameters

Texture is the name of the array containing the texture map applied to the destination polygon.
For 256-color virtual buffers, the Texture array is a 256-color bitmap, but stored top-down. For
direct color virtual buffers, it is a direct color bitmap, but again stored top-down.

nWidth is the Texture array width in pixels.
Return value

none
Restrictions

none
Replaced by

fg_tmdefine(), fg_tmselect()

Fastgraph 6.0 Reference Manual « 333

fg_tmdefine()

Prototype
C/C++ int fg tndefine (void *Texture, int nWdth, int nHeight);
C# int fg.tndefine (ref byte Texture, int nWdth, int nHeight);
Delphi function fg_tndefine (var Texture; nWdth, nHeight : integer)
i nt eger;
VB Function fg_tndefine (Texture As Any, ByVal nWdth As Long,

ByVal nHeight As Long) As Long

VB.NET Function fg tndefine (ByRef Texture As Byte, ByVal nWdth As
I nteger, ByVal nHeight As Integer) As |nteger

Description

The fg_tmdefine() function assigns a handle to a texture map, and if using Direct3D, loads the
texture map into a DirectDraw texture surface.

Parameters

Texture is an array containing the texture map. For 256-color virtual buffers, Texture is a 256-
color bitmap, but stored top-down. For direct color virtual buffers, it is a direct color bitmap, but
again stored top-down.

nWidth is the Texture array width in pixels.
nHeight is the Texture array height in pixels.
Return value

If successful, fg_tmdefine() returns a handle by which the texture map is referenced (greater
than or equal to 0). If unsuccessful, possible return codes are -1 (maximum number of textures
exceeded) or -2 (cannot make texture available to Direct3D).

Restrictions

When using the .NET framework, Texture must be a pinned object (this restriction may be lifted
in a future version of Fastgraph).

If using Direct3D, the texture map width and height must be powers of two.
See also

fg_3Dtexturemap(), fg_3Dtexturemapobject(), fg_tmfree(), fg_tminit(), fg_tmselect()
Examples

TMcube, TMcubeX

334 « Fastgraph 6.0 Reference Manual

fg_tmevict()

Prototype
C/C++ void fg tnmevict (void);
C# void fg.tmevict ();
Delphi procedure fg tmevict;
VB Sub fg_tnevict ()
VB.NET Sub fg trevict ()
Description

The fg_tmevict() function moves all Direct3D managed textures from video memory to system
memory.

Parameters
none

Return value
none

Restrictions

This function is meaningful only when using Fastgraph's DirectX libraries with Direct3D hardware
acceleration under DirectX 6 or later. It does nothing when using DirectX 5 or earlier, when using
Direct3D software rendering, or when using Fastgraph's native libraries.

See also

fg_ddsetversion(), fg_tmdefine(), fg_tmfree()

Fastgraph 6.0 Reference Manual « 335

fg_tmfree()

Prototype
C/C++ void fg tnfree (int hTM;
C# void fg.tnfree (int hTM;
Delphi procedure fg tnfree (hTM: integer);
VB Sub fg_ tnfree (ByVal hTM As Long)

VB.NET Sub fg tnfree (ByVal hTM As | nteger)
Description

The fg_tmfree() function releases a texture handle, and if using Direct3D, releases the
DirectDraw surface associated with the texture map.

Parameters

hTM is the texture handle to release. If hTM is negative, fg_tmfree() will release all texture
handles.

Return value
none
Restrictions
none
See also
fg_3Dtexturemap(), fg_3Dtexturemapobject(), fg_tmdefine(), fg_tminit(), fg_tmselect()
Examples
TMcube, TMcubeX

336 « Fastgraph 6.0 Reference Manual

fg_tminit()
Prototype
C/C++ int fg tmnit (int nCount);
C# int fg.tmnit (int nCount);
Delphi function fg tmnit (nCount : integer) : integer;
VB Function fg_tmnit (ByVal nCount As Long) As Long

VB.NET Function fg tmnit (ByVal nCount As Integer) As Integer
Description

The fg_tminit() function initializes Fastgraph's texture map manager.
Parameters

nCount is the maximum number of texture maps that will be in use at the same time.
Return value

0 = Success

- 1 = Error allocating memory
Restrictions

none
See also

fg_3Dtexturemap(), fg_3Dtexturemapobject(), fg_tmdefine(), fg_tmfree(), fg_tmselect()
Examples

TMcube, TMcubeX

Fastgraph 6.0 Reference Manual « 337

fg_tmselect()

Prototype
C/C++ void fg tnselect (int hTM;
C# void fg.tnselect (int hTM;

Delphi procedure fg tnmselect (hTM: integer);

VB Sub fg_tnsel ect (ByVal hTM As Long)

VB.NET Sub fg tnselect (ByVal hTM As | nteger)
Description

The fg_tmselect() function makes the specified texture map the active texture map.
Parameters

hTM is the texture map handle returned by fg_tmdefine().
Return value

none
Restrictions

none
See also

fg_3Dtexturemap(), fg_3Dtexturemapobject(), fg_tmdefine(), fg_tmfree(), fg_tminit()
Examples

TMcube, TMcubeX

338 « Fastgraph 6.0 Reference Manual

fg_tmspan()

Prototype
C/C++ void fg tnmspan (int nPixels);

C# void fg.tnmspan (int nPixels);
Delphi procedure fg tmspan (nPixels : integer);
VB Sub fg_tnmspan (ByVal nPixels As Long)

VB.NET Sub fg tmspan (ByVal nPixels As Integer)
Description

The fg_tmspan() function defines the span size in pixels for perspective texture mapping. The
span size is the pixel interval at which the perspective texture mapping functions calculate the
true u and v texture coordinates when drawing horizontal polygon rows. Smaller span sizes result
in texture mapping that is more perspectively correct, but larger span sizes are faster. The default
span size is 32 pixels.

Parameters

nPixels defines the span size in pixels. If nPixels is 1, the perspective texture mapping functions
will draw perspective correct texture-mapped polygons. If nPixels is greater than 1, these
functions will draw perspective corrected texture-mapped polygons.

Return value
none
Restrictions

This function has no effect when using Direct3D hardware acceleration or Direct3D software
rendering.

See also

fg_3Dtexturemap(), fg_3Dtexturemapobject()

Fastgraph 6.0 Reference Manual « 339

fg_tmtransparency()

Prototype
C/C++ void fg tntransparency (int State);
C# void fg.tntransparency (int State);
Delphi procedure fg tmransparency (State : integer);
VB Sub fg_tntransparency (ByVal State As Long)
VB.NET Sub fg tmransparency (ByVal State As |nteger)
Description

The fg_tmtransparency() function defines the transparency state of zero-value pixels in texture
maps.

Parameters

State defines the transparency state of zero-value pixels in texture maps. If State is zero, zero-
value pixels will not be transparent (this is the default behavior). If State is any other value, zero-
value pixels will be transparent.

Return value
none

Restrictions
none

See also

fg_3Dtexturemap(), fg_3Dtexturemapobject()

340 « Fastgraph 6.0 Reference Manual

fg_tmunits()

Prototype
C/C++ void fg tnmunits (int Units);
C# void fg.tmunits (int Units);
Delphi procedure fg trmunits (Units : integer);
VB Sub fg_tmunits (ByVal Units As Long)
VB.NET Sub fg trmunits (ByVal Units As |nteger)
Description

The fg_tmunits() function specifies if the (u,v) coordinate arrays passed to Fastgraph's texture
mapping functions use integer or floating point values. Floating point (u,v) coordinates can
provide better results when 3D clipping is applied to textures. By default, the texture mapping
functions assume (u,v) coordinates are integers.

Parameters

Units specifies the (u,v) coordinate type. If Units is 0, the texture mapping functions expect
integer (u,v) coordinates. If Units is any other value, the texture mapping functions expect 32-bit
floating point (u,v) coordinates.

Return value
none

Restrictions
none

See also

fg_3Dtexturemap(), fg_3Dtexturemapobject(), fg_3Dzcliptm(), fg_texmap(), fg_texmapp(),
fg_texmappz(), fg_texmapz()

Fastgraph 6.0 Reference Manual « 341

fg_transdcb()

Prototype

C/C++ void fg transdcb (void *Source, void *Dest, int sDepth, int
dDepth, int nSize);

C# void fg.transdcb (ref byte Source, ref byte Dest, int sDepth,
int dDepth, int nSize);

Delphi procedure fg transdcb (var Source, Dest; sDepth, dDepth, nSize
i nteger);

VB Sub fg_transdcb (Source() As Any, Dest() As Any, ByVal sDepth
As Long, ByVal dDepth As Long, ByVal nSize As Long)

VB.NET Sub fg transdcb (ByRef Source As Byte, ByRef Dest As Byte,
ByVal sDepth As Integer, ByVal dDepth As |Integer, ByVal nSize
As | nt eger)

Description
The fg_transdch() function translates a direct color bitmap to another color depth.
Parameters
Source is the name of the array containing the direct color bitmap to be converted.
Dest is the name of the array that will receive the resulting converted bitmap.
sDepth is the color depth of the source bitmap. It must be 15, 16, or 24.
dDepth is the color depth of the dest bitmap. It must be 15, 16, or 24.
nSize is the size of each direct color bitmap in pixels.
Return value
none
Restrictions
If sDepth and dDepth are not 15, 16, or 24, fg_transdcb() does nothing.

If translating a high color bitmap to true color, the Source and Dest bitmaps must be different
bitmaps.

See also

fg_getdepth(), fg_gethcbpp()

342 « Fastgraph 6.0 Reference Manual

fg_transfer()

Prototype

C/C++ void fg transfer (int xMn, int xMax, int yMn, int yMax, int
xNew, int yNew, int Source, int Dest);

C# void fg.transfer (int xMn, int xMax, int yMn, int yMax, int
xNew, int yNew, int Source, int Dest);

Delphi procedure fg transfer (xMn, xMax, yMn, yMax, xNew, yNew,
Source, Dest : integer);

VB Sub fg_transfer (ByVal xMn As Long, ByVal xMax As Long, ByVal
yMn As Long, ByVal yMax As Long, ByVal xNew As Long, ByVal
yNew As Long, ByVal Source As Long, ByVal Dest As Long)

VB.NET Sub fg transfer (ByVal xMn As |nteger, ByVal xMax As |nteger,
ByVal yMn As Integer, ByVal yMax As |nteger, ByVal xNew As
I nteger, ByVal yNew As Integer, ByVal Source As Integer, ByVal
Dest As Integer)

Description

The fg_transfer() legacy function copies a rectangular region from one virtual buffer to another,
or to a non-overlapping position within the same virtual buffer. It is equivalent to fg_vbcopy().

Parameters
XMin is the x coordinate of the source region's left edge.

XMax is the x coordinate of the source region's right edge. It must be greater than or equal to the
value of xMin.

yMin is the y coordinate of the source region's top edge.

yMax is the y coordinate of the source region's bottom edge. It must be greater than or equal to
the value of yMin.

xNew is the x coordinate of the destination region's left edge.

yNew is the y coordinate of the destination region's bottom edge.

Source is the handle for the virtual buffer containing the source region.

Dest is the handle for the virtual buffer containing the destination region.
Return value

none
Restrictions

The source and destination virtual buffers must be the same color depth.

If Source and Dest reference the same virtual buffer, the source and destination regions must not
overlap.

When using DirectX, the source and destination virtual buffers must not be locked.

Replaced by
fg_vbcopy()

Fastgraph 6.0 Reference Manual « 343

fg_trig()

Prototype
CIC++
C#
Delphi
VB

VB.NET

Description

void fg trig (int Angle, double *Cosine, double *Sine);
void fg.trig (int Angle, out double Cosine, out double Sine);
procedure fg trig (Angle : integer; var Cosine, Sine : double);

Sub fg_ trig (ByVal Angle As Long, Cosine As Double, Sine As
Doubl e)

Sub fg_ trig (ByVal Angle As Integer, ByRef Cosine As Doubl e,
ByRef Sine As Doubl e)

The fg_trig() function returns the floating point cosine and sine of a given angle. This function is
called internally by Fastgraph's 3D functions and is not usually called directly by applications.

Parameters

Angle is the angle, expressed in tenths of degrees.

Cosine receives the cosine of the angle.

Sine receives the sine of the angle.

Return value

none

Restrictions

none

344 « Fastgraph 6.0 Reference Manual

fg_unmaprgb()

Prototype
C/C++ void fg _unmaprgb (int nCol or,
C# voi d fg.unmaprgb (int nCol or,
int Blue);
Delphi procedure fg unmaprgb (nCol or
i nteger);
VB Sub fg_unmaprgb (ByVal nCol or
Long, Blue As Long)
VB.NET Sub fg unnmaprgb (ByVal nCol or
ByRef Green As Integer, ByRef
Description

int *Red, int

int Red,

*@een, int *Blue);

out out int Geen, out

i nteger; var Red, Geen, Blue :

As Long, Red As Long, Green As

As Integer, ByRef Red As Integer,
Bl ue As Integer)

The fg_unmaprgb() function extracts the red, green, and blue color components from an

encoded 16-bit or 32-bit color value.

Parameters

nColor is the encoded color value. For high color virtual buffers, nColor is a 16-bit encoded RGB
value. For true color virtual buffers, nColor is a 32-bit value encoded as four 8-bit color

components (XRGB).

Red receives the encoded color value's red component, between 0 and 255.

Green receives the encoded color value's green component, between 0 and 255.

Blue receives the encoded color value's blue component, between 0 and 255.

Return value
none

Restrictions

This function is meaningful only with direct color virtual buffers.

See also

fg_maprgb(), fg_setrgh()

Fastgraph 6.0 Reference Manual « 345

fg_unpack()

Prototype
C/C++ voi d fg unpack (void *Source, void *Dest, int nSize);
C# voi d fg.unpack (ref byte Source, ref byte Dest, int nSize);
Delphi procedure fg unpack (var Source, Dest; nSize : integer);
VB fub ;g_unpack (Source() As Any, Dest() As Any, ByVal nSize As
ong

VB.NET Sub fg unpack (ByRef Source As Byte, ByRef Dest As Byte, ByVal
nSi ze As | nteger)

Description
The fg_unpack() legacy function converts a 16-color bitmap to a 256-color bitmap.
Parameters
Source is the name of the array containing the 16-color bitmap to convert.
Dest is the name of the array that will receive the converted 256-color bitmap.
nSize is the size of the Source array in bytes.
Return value
none
Restrictions
none
Replaced by

256-color bitmap functions

346 « Fastgraph 6.0 Reference Manual

fg_vb2clip()

Prototype
C/C++ int fg vb2clip (int xMn, int xMax, int yMn, int yMax);
C# int fg.vb2clip (int xMn, int xMax, int yMn, int yMax);
Delphi function fg_vb2clip (xMn, xMax, yMn, yMax : integer)
i nt eger;
VB Function fg_vb2clip (ByvVal xMn As Long, ByVal xMax As Long,

ByVal yMn As Long, ByVal yMax As Long) As Long

VB.NET Function fg vb2clip (ByVal xMn As |Integer, ByVal xMax As
Integer, ByVal yMn As Integer, ByVal yMax As Integer) As
I nt eger

Description

The fg_vb2clip() function copies a rectangular region from the active virtual buffer to the
Windows clipboard. A DIB is constructed from the specified region, and the DIB along with its
palette data are written to the clipboard. The region’s extremes are expressed in screen space
units.

Parameters
XMin is the x coordinate of the source region's left edge.

xMax is the x coordinate of the source region's right edge. It must be greater than or equal to the
value of xMin.

yMin is the y coordinate of the source region's top edge.

yMax is the y coordinate of the source region's bottom edge. It must be greater than or equal to
the value of yMin.

Return value
0 = Success

- 1 = Another application has control of the clipboard

- 2 = There is not enough free global memory to create the DIB
Restrictions

none
See also

fg_clip2vb(), fg_vbpaste()
Examples

CBdemo

Fastgraph 6.0 Reference Manual « 347

fg_vbaddr()

Prototype
C/C++ I ong fg_vbaddr (int hVvB);
C# int fg.vbaddr (int hVB);

Delphi function fg vbaddr (hVB : integer) : pointer;

VB Function fg_vbaddr (ByVal hVB As Long) As Long

VB.NET Function fg vbaddr (ByVal hVB As Integer) As Integer
Description

For the native libraries, fg_vbaddr() returns the address of the specified virtual buffer. For the
DirectX libraries, it returns a pointer to the DirectDrawSurface object for the specified virtual
buffer. Use fg_ddlock() to obtain the virtual buffer address when using the DirectX libraries.

Parameters

hVB is the virtual buffer handle.
Return value

The address of, or a pointer to the DirectDrawSurface object for, the specified virtual buffer.
Restrictions

If hVB does not reference a valid virtual buffer handle, the return value will be undefined.
See also

fg_ddlock(), fg_getline(), fg_vbopen()
Examples

SetupD3D

348 « Fastgraph 6.0 Reference Manual

fg_vballoc()

Prototype
C/C++ int fg vballoc (int nWdth, int nHeight);
C# int fg.vballoc (int nWdth, int nHeight);
Delphi function fg vballoc (nWdth, nHeight : integer) : integer;
VB Function fg_vballoc (ByvVal nWdth As Long, ByVal nHei ght As

Long) As Long

VB.NET Function fg vballoc (ByVal nWdth As Integer, ByVal nHeight As
I nteger) As Integer

Description

The fg_vballoc() function creates a virtual buffer of the specified size. The memory for the virtual
buffer is allocated automatically. Virtual buffers are usually created in the WM_CREATE
message handler.

In Fastgraph's DirectX libraries, fg_vballoc() can create virtual buffers in system memory or in
video memory. By default, it will create virtual buffers in system memory, but you can change this
through fg_ddmemory().

Parameters

nWidth is the virtual buffer width in pixels. If necessary, the width is extended to a multiple of four
bytes.

nHeight is the virtual buffer height in pixels.
Return value

If successful, fg_vballoc() returns a handle by which the virtual buffer is referenced (between 0
and 255). If unsuccessful, possible return codes are -1 (virtual buffer table full) or -2 (cannot
allocate memory for the virtual buffer).

Restrictions

none
See also

fg_ddmemory(), fg_vbdefine(), fg_vbdepth(), fg_vbfree(), fg_vbinit(), fg_vbopen()
Examples

Nearly all the example programs use this function.

Fastgraph 6.0 Reference Manual « 349

fg_vbclose()

Prototype
C/C++ voi d fg vbcl ose (void);
C# voi d fg.vbclose ();
Delphi procedure fg vbcl ose;
VB Sub fg_vbcl ose ()
VB.NET Sub fg vbclose ()
Description

The fg_vbclose() function closes the active virtual buffer. It is usually called in the
WM_DESTROY message handler.

Parameters
none

Return value
none

Restrictions
none

See also
fg_vbopen()

Examples

All the example programs use this function.

350 « Fastgraph 6.0 Reference Manual

fg_vbcolors()

Prototype
C/C++ void fg vbcolors (void);
C# void fg.vbcolors ();
Delphi procedure fg vbcol ors;
VB Sub fg_vbcolors ()
VB.NET Sub fg vbcolors ()
Description

The fg_vbcolors() function copies the colors from the current logical palette into the active virtual
buffer's color table. It is usually called immediately after opening each 256-color virtual buffer for
the first time (you do not need to use fg_vbcolors() with direct color virtual buffers).

Parameters
none
Return value
none
Restrictions
none
See also
fg_defpal(), fg_logpal(), fg_vbopen()
Examples

Nearly all the example programs use this function.

Fastgraph 6.0 Reference Manual « 351

fg_vbcopy()

Prototype

C/C++ void fg vbcopy (int xMn, int xMax, int yMn, int yMax, int
xNew, int yNew, int Source, int Dest);

C# void fg.vbcopy (int xMn, int xMax, int yMn, int yMax, int
xNew, int yNew, int Source, int Dest);

Delphi procedure fg vbcopy (xMn, xMax, mny, yMax, newx, YyNew,
Source, Dest : integer);

VB Sub fg_vbcopy (ByVal xMn As Long, ByVal xMax As Long, ByVal
yMn As Long, ByVal yMax As Long, ByVal xNew As Long, ByVal
yNew As Long, ByVal Source As Long, ByVal Dest As Long)

VB.NET Sub fg vbcopy (ByVal xMn As Integer, ByVal xMax As |nteger,
ByVal yMn As Integer, ByVal yMax As |nteger, ByVal xNew As
I nteger, ByVal yNew As Integer, ByVal Source As Integer, ByVal
Dest As Integer)

Description

The fg_vbcopy() function copies a rectangular region from one virtual buffer to another, or to a
non-overlapping position within the same virtual buffer.

Parameters
XMin is the x coordinate of the source region's left edge.

xMax is the x coordinate of the source region's right edge. It must be greater than or equal to the
value of xMin.

yMin is the y coordinate of the source region's top edge.

yMax is the y coordinate of the source region's bottom edge. It must be greater than or equal to
the value of yMin.

xNew is the x coordinate of the destination region's left edge.

yNew is the y coordinate of the destination region's bottom edge.

Source is the handle for the virtual buffer containing the source region.

Dest is the handle for the virtual buffer containing the destination region.
Return value

none
Restrictions

The source and destination virtual buffers must be the same color depth.

If Source and Dest reference the same virtual buffer, the source and destination regions must not
overlap.

When using DirectX, the source and destination virtual buffers must not be locked.
See also

fg_vbopen(), fg_vbtccopy(), fg_vbtcopy(), fg_vbtzcopy()
Examples

VBdemo

352 « Fastgraph 6.0 Reference Manual

fg_vbdefine()

Prototype
C/C++ int fg vbdefine (void *Buffer, int nwdth, int nHeight);
C# int fg.vbdefine (ref byte Buffer, int nWdth, int nHeight);
Delphi function fg vbdefine (Buffer : pointer; nWdth, nHeight
i nteger) : integer;
VB Function fg_vbdefine (Buffer() As Any, ByVal nWdth As Long,

ByVal nHeight As Long) As Long

VB.NET Function fg vbdefine (ByRef Buffer As Byte, ByVal nWdth As
I nteger, ByVal nHeight As Integer) As I|nteger

Description

The fg_vbdefine() function creates a virtual buffer with the specified dimensions from previously
allocated memory. Virtual buffers are usually created in the WM_CREATE message handler.
Use fg_vbsize() to determine the amount of memory needed for the virtual buffer. Refer to
Chapter 10 of the Fastgraph 6.0 User's Guide for details about allocating blocks of memory
suitable for virtual buffers.

Parameters
Buffer is the address of the virtual buffer.

nWidth is the virtual buffer width in pixels. If necessary, the width is extended to a multiple of four
bytes.

nHeight is the virtual buffer height in pixels.
Return value

If successful, fg_vbdefine() returns a handle by which the virtual buffer is referenced (between 0
and 255). If unsuccessful, the function returns -1.

Restrictions

When using the .NET framework, Buffer must be a pinned object (this restriction may be lifted in
a future version of Fastgraph).

This function cannot be used to create virtual buffers when using Fastgraph's DirectX libraries
(use fg_vballoc() instead).

See also

fg_vballoc(), fg_vbdepth(), fg_vbinit(), fg_vbopen(), fg_vbsize(), fg_vbundef()

Fastgraph 6.0 Reference Manual « 353

fg_vbdepth()

Prototype
C/C++ voi d fg_vbdepth (int nDepth);
C# voi d fg.vbdepth (int nDepth);

Delphi procedure fg vbdepth (nDepth : integer);

VB Sub fg_vbdepth (ByVal nDepth As Long)

VB.NET Sub fg vbdepth (ByVal nDepth As Integer)
Description

The fg_vbdepth() function defines the default virtual buffer color depth in bits per pixel.
Parameters

nDepth is the new default virtual buffer color depth in bits per pixel. It must be either 8, 16, 24, or
32.

Return value
none
Restrictions
none
See also
fg_vballoc(), fg_vbdefine(), fg_vbinit()
Examples

Blend, Colors, Columns, Cube, Dcb, FirstDD, Image, ImgProc, TMcube, TMcubeX, Tunnel

354 « Fastgraph 6.0 Reference Manual

fg_vbfin()

Prototype
C/IC++ void fg_vbfin (void);
C# void fg.vbfin ();
Delphi procedure fg vbfin;
VB Sub fg_vbfin ()

VB.NET Sub fg_vbfin ()
Description

The fg_vbfin() function terminates virtual buffer processing. It is usually the last Fastgraph
function called in the WM_DESTROY message handler.

Parameters
none

Return value
none

Restrictions

Before calling this function, all virtual buffers created with fg_vballoc() must be released with
fg_vbfree(). In addition, any virtual buffer handles set up through fg_vbdefine() must be
released with fg_vbundef().

See also
fg_vbfree(), fg_vbinit(), fg_vbundef()
Examples

All the example programs use this function.

Fastgraph 6.0 Reference Manual « 355

fg_vbfree()

Prototype
C/C++ void fg vbfree (int hvB);
C# void fg.vbfree (int hVvB);

Delphi procedure fg vbfree (hVB : integer);

VB Sub fg_vbfree (ByVal hVB As Long)

VB.NET Sub fg vbfree (ByVal hVB As I|nteger)
Description

The fg_vbfree() function releases a virtual buffer's handle and frees the memory allocated to the
virtual buffer. It is usually called in the WM_DESTROY message handler.

Parameters

hVB is the handle that references the virtual buffer to free. Its value must be a valid virtual buffer
handle and must not reference the active virtual buffer. If hVB is negative and no virtual buffer is
active, fg_vbfree() frees all virtual buffers.

Return value
none
Restrictions
You should use fg_vbfree() only with virtual buffers created with fg_vballoc().
This function has no effect if hVB references the active virtual buffer.
See also
fg_vballoc(), fg_vbfin()
Examples

Nearly all the example programs use this function.

356 « Fastgraph 6.0 Reference Manual

fg_vbhandle()

Prototype
C/C++ int fg_vbhandl e (void);
C# int fg.vbhandle ();
Delphi function fg vbhandl e : integer;
VB Function fg_vbhandle () As Long

VB.NET Function fg vbhandle () As Integer
Description

The fg_vbhandle() function returns the handle of the active virtual buffer.
Parameters

none
Return value

The active virtual buffer handle, between 0 and 255. If no virtual buffer is active, the return value
is -1.

Restrictions
none
See also

fg_vbopen()

Fastgraph 6.0 Reference Manual « 357

fg_vbinit()

Prototype
C/C++ int fg vbinit (void);
C# int fg.vbinit ();
Delphi function fg vbinit : integer;
VB Function fg_vbinit () As Long

VB.NET Function fg vbinit () As Integer
Description

The fg_vbinit() function initializes Fastgraph's virtual buffer environment. This function must be
called once, before any other functions that reference virtual buffers, usually in the WM_CREATE
message handler.

In Fastgraph's DirectX libraries, fg_vbinit() also initializes DirectDraw and Direct3D.
Parameters
none
Return value
For Fastgraph's native libraries, the return value will always be zero.
For Fastgraph's DirectX libraries, the possible return values are:
- 1 = DirectX not available
0 = Using DirectX with Fastgraph's 3D rendering
1 = Using DirectX with Direct3D software rendering
2 = Using DirectX with Direct3D hardware acceleration
Restrictions
none
See also
fg_ddsetup(), fg_vballoc(), fg_vbdefine(), fg_vbdepth(), fg_vbfin(), fg_vbfree(), fg_vbopen()
Examples

All the example programs use this function.

358 « Fastgraph 6.0 Reference Manual

fg_vbopen()

Prototype
C/C++ int fg vbopen (int hVB);
C# int fg.vbopen (int hVB);

Delphi function fg vbopen (hVB : integer) : integer;

VB Function fg_vbopen (ByVal hVB As Long) As Long

VB.NET Function fg vbopen (ByVal hVB As Integer) As Integer
Description

The fg_vbopen() function makes an existing virtual buffer the active virtual buffer. If another
virtual buffer is open when you call fg_vbopen(), that virtual buffer is first closed.

Parameters

hVB is the handle of the desired virtual buffer, as returned by fg_vballoc() or fg_vbdefine(). Its
value must be a valid virtual buffer handle.

Return value
0 = Virtual buffer opened successfully

- 1 = Invalid virtual buffer handle

- 2 = No virtual buffer yet defined for specified handle
Restrictions

none
See also

fg_vballoc(), fg_vbclose(), fg_vbdefine(), fg_vbinit()
Examples

All the example programs use this function.

Fastgraph 6.0 Reference Manual « 359

fg_vbpaste()

Prototype

C/C++ void fg vbpaste (int xMn,
xdient, int yCient);

C# voi d fg.vbpaste (int xMn,
xdient, int yCient);

Delphi procedure fg vbpaste (xMn,

i nteger);

VB Sub fg_vbpaste (ByVal
yMn As Long,
yCient As Long)

VB.NET Sub fg vbpaste (ByVal
ByVal yMn As I|nteger,
I nt eger, ByVal

Description

XM n As Long,
yMax As Long,

int xMax, int yMn, int yMax, int

int xMax, int yMn, int yMax, int

yMn, yMax, xCient, ydient

ByVal xMax As Long, ByVal

ByVal xdient As Long, ByVal

XM n As Integer, ByVal xMax As | nteger,
yMax As Integer, ByVal xdient As
ydient As |nteger)

The fg_vbpaste() function copies a rectangular region from the active virtual buffer to the
window's client area. The WM_PAINT message handler usually calls fg_vbpaste() or

fg_vbscale().

Parameters

XMin is the x coordinate of the source region's left edge.

xMax is the x coordinate of the source region's right edge. It must be greater than or equal to the

value of xMin.

yMin is the y coordinate of the source region's top edge.

yMax is the y coordinate of the source region's bottom edge. It must be greater than or equal to

the value of yMin.

xClient is the x coordinate of the destination region's left edge, expressed in client units.

yClient is the y coordinate of the destination region's bottom edge, expressed in client units.

Return value
none

Restrictions

When using DirectX, the active virtual buffer must not be locked.

See also
fg_vb2clip(), fg_vbscale()

Examples

Columns, Display, FrameDD, FullScr, Graphics, KBdemo, Panner, SWchars, TMcubeX

360 « Fastgraph 6.0 Reference Manual

fg_vbprint()

Prototype

C/C++ void fg vbprint (int xMn, int xMax, int yMn, int yMax, int
XMnPrint, int xMaxPrint, int yMnPrint, int yMaxPrint, int

Units);

C# void fg.vbprint (int xMn, int xMax, int yMn, int yMax, int
XMnPrint, int xMaxPrint, int yMnPrint, int yMaxPrint, int
Units);

Delphi procedure fg vbprint (xMn, xMax, yMn, yMax, XM nPrint,
xMaxPrint, yMnPrint, yMaxPrint, Units : integer);

VB Sub fg_vbprint (ByvVal xMn As Long, ByVal xMax As Long, ByVal
yMn As Long, ByVal yMax As Long, ByVal xmn As Long, ByVal
xmax As Long, ByVal yMnPrint As Long, ByVal yMaxPrint As Long,
ByVal Units As Long)

VB.NET Sub fg vbprint (ByVal xMn As |Integer, ByVal xMax As |nteger,
ByVal yMn As Integer, ByVal yMax As |nteger, ByVal xM nPrint
As I nteger, ByVal xMaxPrint As Integer, ByVal yMnPrint As
I nteger, ByVal yMaxPrint As Integer, ByVal Units As Integer)

Description

The fg_vbprint() function prints a rectangular region from the active virtual buffer on the active
printer, scaling the printed image as requested. Source coordinates are expressed in screen
space, while destination coordinates are expressed in the specified units.

Parameters
XMin is the x coordinate of the source region's left edge.

xMax is the x coordinate of the source region's right edge. It must be greater than or equal to the
value of xMin.

yMin is the y coordinate of the source region's top edge.

yMax is the y coordinate of the source region's bottom edge. It must be greater than or equal to
the value of yMin.

XMinPrint is the x coordinate of the destination region's left edge.

XMaxPrint is the x coordinate of the destination region's right edge. It must be greater than or
equal to the value of xMinPrint.

yMinPrint is the y coordinate of the destination region's top edge.

yMaxPrint is the y coordinate of the destination region's bottom edge. It must be greater than or
equal to the value of yMinPrint.

Units specifies the units of the destination coordinates, as shown here:

Value Meaning Value Meaning
0 device units (no translation)
1 percentage 4 millimeters
2 0.01 inches 5 0.1 millimeters
3 0.001 inches 6 0.01 millimeters

Return value

none

Fastgraph 6.0 Reference Manual « 361

fg_vbprint() (continued)

Restrictions

none
See also

fg_printdc(), fg_printer()
Examples

Prdemo

362 « Fastgraph 6.0 Reference Manual

fg_vbscale()

Prototype

C/C++ void fg vbscale (int xMn, int xMax, int yMn, int yMax, int
xMndient, int xMaxdient, int yMnOient, int yMaxdient);

C# void fg.vbscale (int xMn, int xMax, int yMn, int yMax, int
xMndient, int xMaxCient, int yMndient, int yMaxdient);

Delphi procedure fg vbscale (xMn, xMax, yMn, yMax, xMnd i ent,
xMaxd ient, yMndient, yMaxdient : integer);

VB Sub fg_vbscale (ByvVal xMn As Long, ByVal xMax As Long, ByVal
yMn As Long, ByVal yMax As Long, ByVal xM nCient As Long,
ByVal xMaxdient As Long, ByVal yMnCient As Long, ByVal
yMaxd i ent As Long)

VB.NET Sub fg vbscale (ByVal xMn As |Integer, ByVal xMax As |nteger,
ByVal yMn As Integer, ByVal yMax As |nteger, ByVal xM ndient
As |Integer, ByVal xMaxCient As Integer, ByVal yMndient As
I nteger, ByVal yMaxdient As Integer)

Description

The fg_vbscale() function copies a rectangular region from the active virtual buffer to the
window's client area, scaling the image to fit the client area as requested. Source coordinates are
expressed in screen space, while destination coordinates are expressed as client coordinates.
The WM_PAINT message handler usually calls fg_vbpaste() or fg_vbscale().

Parameters

XMin is the x coordinate of the source region's left edge.

xMax is the x coordinate of the source region's right edge. It must be greater than or equal to the
value of xMin.

yMin is the y coordinate of the source region's top edge.

yMax is the y coordinate of the source region's bottom edge. It must be greater than or equal to
the value of yMin.

xMinClient is the x coordinate of the destination region's left edge.

xMaxClient is the x coordinate of the destination region's right edge. It must be greater than or
equal to the value of xMinClient.

yMinClient is the y coordinate of the destination region's top edge.

yMaxClient is the y coordinate of the destination region's bottom edge. It must be greater than or
equal to the value of yMinClient.

Return value

none

Restrictions

When using DirectX, the active virtual buffer must not be locked.

See also

fg_scale(), fg_vbpaste()

Fastgraph 6.0 Reference Manual « 363

fg_vbscale() (continued)

Examples

Nearly all the example programs use this function.

364 « Fastgraph 6.0 Reference Manual

fg_vbsize()

Prototype
C/C++ long fg_vbsize (int nWdth, int nHeight);
C# int fg.vbsize (int nWdth, int nHeight);

Delphi function fg vbsize (nWdth, nHeight : integer) : longint;

VB Function fg_vbsize (ByVal nWdth As Long, ByVal nHeight As
Long) As Long

VB.NET Function fg vbsize (ByVal nWdth As Integer, ByVal nHeight As
I nteger) As Integer

Description

The fg_vbsize() function returns the number of bytes required for a virtual buffer of specified
dimensions, using the current color depth.

Parameters
nWidth specifies the virtual buffer width in pixels.
nHeight specifies the virtual buffer height in pixels.
Return value
The number of bytes required for a virtual buffer of the specified size and current color depth.
Restrictions
none
See also
fg_vbdefine(), fg_vbdepth(), fg_vbinit()

Fastgraph 6.0 Reference Manual « 365

fg_vbtccopy()

Prototype

C/C++ void fg vbtccopy (int xMn, int xMax, int yMn, int yMax, int
xNew, int yNew, int Source, int Dest);

C# void fg.vbtccopy (int xMn, int xMax, int yMn, int yMax, int
xNew, int yNew, int Source, int Dest);

Delphi procedure fg vbtccopy (xMn, xMax, yMn, yMax, xNew, yNew,
Source, Dest : integer);

VB Sub fg_vbtccopy (ByVal xMn As Long, ByVal xMax As Long, ByVal
yMn As Long, ByVal yMax As Long, ByVal xNew As Long, ByVal
yNew As Long, ByVal Source As Long, ByVal Dest As Long)

VB.NET Sub fg vbtccopy (ByVal xMn As |nteger, ByVal xMax As |nteger,
ByVal yMn As Integer, ByVal yMax As |nteger, ByVal xNew As
I nteger, ByVal yNew As Integer, ByVal Source As Integer, ByVal
Dest As Integer)

Description

The fg_vbtccopy() function copies a rectangular region from one virtual buffer to another, or to a
non-overlapping region in the same virtual buffer. It excludes any pixels whose color is
transparent. As with Fastgraph's other block transfer functions, no clipping is performed. The
fg_tcdefine() function defines which colors are transparent.

Parameters
XMin is the x coordinate of the source region's left edge.

xMax is the x coordinate of the source region's right edge. It must be greater than or equal to the
value of xMin.

yMin is the y coordinate of the source region's top edge.

yMax is the y coordinate of the source region's bottom edge. It must be greater than or equal to
the value of yMin.

xNew is the x coordinate of the destination region's left edge.
yNew is the y coordinate of the destination region's bottom edge.
Source is the handle of the virtual buffer containing the source region.
Dest is the handle of the virtual buffer for the destination region.
Return value
none
Restrictions
The source and destination virtual buffers must be the same color depth.

If Source and Dest reference the same virtual buffer, the source and destination regions must not
overlap.

When using DirectX, the source and destination virtual buffers must not be locked.
See also

fg_tcdefine(), fg_vbcopy(), fg_vbopen(), fg_vbtcopy(), fg_vbtzcopy()

366 « Fastgraph 6.0 Reference Manual

fg_vbtccopy() (continued)

Examples
VBdemo

Fastgraph 6.0 Reference Manual « 367

fg_vbtcopy()

Prototype

C/C++ void fg vbtcopy (int xMn, int xMax, int yMn, int yMax, int
xNew, int yNew, int nColor, int Source, int Dest);

C# void fg.vbtcopy (int xMn, int xMax, int yMn, int yMax, int
xNew, int yNew, int nColor, int Source, int Dest);

Delphi procedure fg vbtcopy (xMn, xMax, yMn, yMax, xNew, yNew,
nCol or, Source, Dest : integer);

VB Sub fg_vbtcopy (ByvVal xMn As Long, ByVal xMax As Long, ByVal
yMn As Long, ByVal yMax As Long, ByVal xNew As Long, ByVal
yNew As Long, ByVal nColor As Long, ByVal Source As Long, ByVal
Dest As Long)

VB.NET Sub fg vbtcopy (ByVal xMn As |Integer, ByVal xMax As |nteger,
ByVal yMn As Integer, ByVal yMax As |nteger, ByVal xNew As
I nteger, ByVal yNew As Integer, ByVal nColor As Integer, ByVal
Source As Integer, ByVal Dest As I|nteger)

Description

The fg_vbtcopy() function copies a rectangular region from one virtual buffer to another, or to a
non-overlapping region in the same virtual buffer, excluding any pixels whose value matches the
specified transparent color. As with Fastgraph's other block transfer routines, no clipping is
performed.

Parameters
XMin is the x coordinate of the source region's left edge.

XMax is the x coordinate of the source region's right edge. It must be greater than or equal to the
value of xMin.

yMin is the y coordinate of the source region's top edge.

yMax is the y coordinate of the source region's bottom edge. It must be greater than or equal to
the value of yMin.

xNew is the x coordinate of the destination region's left edge.
yNew is the y coordinate of the destination region's bottom edge.

nColor is the transparent color. For 256-color virtual buffers, it is a color index between 0 and
255. For direct color virtual buffers, it is an fg_maprgb() encoded color value.

Source is the handle for the virtual buffer containing the source region.
Dest is the handle for the virtual buffer for the destination region.
Return value
none
Restrictions
The source and destination virtual buffers must be the same color depth.

If Source and Dest reference the same virtual buffer, the source and destination regions must not
overlap.

When using DirectX, the source and destination virtual buffers must not be locked.

368 « Fastgraph 6.0 Reference Manual

fg_vbtcopy() (continued)

See also

fg_vbcopy(), fg_vbopen(), fg_vbtccopy(), fg_vbtzcopy()

Fastgraph 6.0 Reference Manual « 369

fg_vbtzcopy()

Prototype

C/C++ void fg vbtzcopy (int xMn, int xMax, int yMn, int yMax, int
xNew, int yNew, int Source, int Dest);

C# void fg.vbtzcopy (int xMn, int xMax, int yMn, int yMax, int
xNew, int yNew, int Source, int Dest);

Delphi procedure fg vbtzcopy (xMn, xMax, yMn, yMax, xNew, yNew,
Source, Dest : integer);

VB Sub fg_vbtzcopy (ByVal xMn As Long, ByVal xMax As Long, ByVal
yMn As Long, ByVal yMax As Long, ByVal xNew As Long, ByVal
yNew As Long, ByVal Source As Long, ByVal Dest As Long)

VB.NET Sub fg vbtzcopy (ByVal xMn As |nteger, ByVal xMax As |nteger,
ByVal yMn As Integer, ByVal yMax As |nteger, ByVal xNew As
I nteger, ByVal yNew As Integer, ByVal Source As Integer, ByVal
Dest As Integer)

Description

The fg_vbtzcopy() function copies a rectangular region from one virtual buffer to another, or to a
non-overlapping region in the same virtual buffer, excluding any pixels whose value is zero. As
with Fastgraph's other block transfer routines, no clipping is performed.

Parameters
XMin is the x coordinate of the source region's left edge.

xMax is the x coordinate of the source region's right edge. It must be greater than or equal to the
value of xMin.

yMin is the y coordinate of the source region's top edge.

yMax is the y coordinate of the source region's bottom edge. It must be greater than or equal to
the value of yMin.

xNew is the x coordinate of the destination region's left edge.
yNew is the y coordinate of the destination region's bottom edge.
Source is the handle for the virtual buffer containing the source region.
Dest is the handle for the virtual buffer for the destination region.
Return value
none
Restrictions
The source and destination virtual buffers must be the same color depth.

If Source and Dest reference the same virtual buffer, the source and destination regions must not
overlap.

When using DirectX, the source and destination virtual buffers must not be locked.
See also

fg_vbcopy(), fg_vbopen(), fg_vbtccopy(), fg_vbtcopy()

370 « Fastgraph 6.0 Reference Manual

fg_vbundef()

Prototype
C/C++ voi d fg vbundef (int hVB);
C# voi d fg.vbundef (int hVB);

Delphi procedure fg vbundef (hVB : integer);

VB Sub fg_vbundef (ByVal hVB As Long)

VB.NET Sub fg vbundef (ByVal hVB As Integer)
Description

The fg_vbundef() function releases the handle associated with a virtual buffer.
Parameters

hVB is the virtual buffer handle to release. Its value must be a valid virtual buffer handle and must
not reference the active virtual buffer.

Return value
none
Restrictions
Use fg_vbundef() only with virtual buffers created with fg_vbdefine().
This function has no effect if hVB references the active virtual buffer.
See also
fg_vbdefine(), fg_vbfin()

Fastgraph 6.0 Reference Manual « 371

fg_version()

Prototype
C/C++ void fg version (int *Major, int *Mnor);
C# void fg.version (out int Major, out int Mnor);
Delphi procedure fg version (var Major, Mnor : integer);
VB Sub fg_version (Major As Long, Mnor As Long)

VB.NET Sub fg version (ByRef Major As |Integer, ByRef M nor As |nteger)
Description

The fg_version() function returns the major and minor version numbers for your copy of
Fastgraph for Windows. For example, if you are using version 6.00, the major version number is
6 and the minor version number is 0.

Parameters

Major receives the major version number.

Minor receives the minor version number, expressed in hundredths.
Return value

none
Restrictions

none

372 « Fastgraph 6.0 Reference Manual

fg_view3d()
Prototype
C/C++ void fg viewdd (int xMn, int xMax, int yMn, int yMax,
Rati o) ;
C# void fg.viewdd (int xMn, int xMax, int yMn, int yMax,
Rati o) ;
Delphi procedure fg viewdd (xMn, xMax, yMn, yMax : integer;
| ongint);
VB Sub fg_viewdd (ByVal xMn As Long, ByVal xMax As Long,

yMn As Long, ByVal yMax As Long, ByVal Ratio As Long)

VB.NET Sub fg viewdd (ByvVal xMn As Integer, ByVal xMax As |nteger,
ByVal yMn As Integer, ByVal yMax As |Integer, ByVal Ratio As

I nt eger)

Description

The fg_view3d() legacy function defines the 3D viewport in screen space and the corresponding

projection ratio. You must set up a 3D viewport before using fg_project().
Parameters

XMin is the x coordinate of the viewport's left edge.

XMax is the x coordinate of the viewport's right edge. It must be greater than or equal to the value

of xMin.

yMin is the y coordinate of the viewport's top edge.

yMax is the y coordinate of the viewport's bottom edge. It must be greater than or equal to the

value of yMin.

Ratio is the fixed point projection ratio. It must be greater than zero.
Return value

none
Restrictions

none
Replaced by

Floating point 3D geometry system

Fastgraph 6.0 Reference Manual « 373

fg_waitfor()

Prototype
C/C++ void fg waitfor (int nTicks);
C# void fg.waitfor (int nTicks);
Delphi procedure fg waitfor (nTicks : integer);
VB Sub fg_ waitfor (ByVal nTicks As Long)

VB.NET Sub fg waitfor (ByVal nTicks As Integer)

Description

The fg_waitfor() function delays a program's execution for a given number of clock ticks. There
are 18.2 clock ticks per second, regardless of the system's processor speed.

Parameters
nTicks is the number of clock ticks to wait.
Return value
none
Restrictions
none
See also

fg_stall()

374 « Fastgraph 6.0 Reference Manual

fg_where()
Prototype

C/C++ void fg where (int *nRow, int *nCol um);

C# void fg.where (out int nRow, out int nColum);

Delphi procedure fg where (nRow, nColumm : integer);

VB Sub fg_where (nRow As Long, nColum As Long)

VB.NET Sub fg where (ByRef nRow As Integer, ByRef nColumm As |nteger)
Description

The fg_where() legacy function retrieves the text cursor position.

Parameters

nRow receives the text cursor's current row number, between 0 and one less than the number of
character rows available.

nColumn receives text cursor's current column number, between 0 and one less than the number
of character columns available.

Return value

none

Restrictions

none

Replaced by

Screen space

Fastgraph 6.0 Reference Manual « 375

fg_xalpha()

Prototype
C/C++ int fg xalpha (int x);
C# int fg.xalpha (int x);
Delphi function fg xal pha (x : integer) : integer;
VB Function fg_xal pha (ByVal x As Long) As Long

VB.NET Function fg xal pha (ByVal x As Integer) As |nteger
Description

The fg_xalpha() legacy function translates a screen space x coordinate to the character space
column containing that coordinate.

Parameters
X is the screen space coordinate to translate.
Return value
The character space column containing the screen space coordinate x.
Restrictions
none
Replaced by

Screen space

376 « Fastgraph 6.0 Reference Manual

fg_xclient()
Prototype
C/C++ int fg xclient (int x);
C# int fg.xclient (int x);
Delphi function fg xclient (x : integer) : integer;
VB Function fg_xclient (ByVal x As Long) As Long

VB.NET Function fg xclient (ByVal x As Integer) As I|Integer
Description

The fg_xclient() function translates a screen space x coordinate to the corresponding client area
x coordinate.

Parameters
X is the screen space coordinate to translate.
Return value
The client x coordinate corresponding to the screen space coordinate x.
Restrictions
none
See also
fg_xvb(), fg_yclient(), fg_yvb()
Examples

Fontdemo, Stringsl

Fastgraph 6.0 Reference Manual « 377

fg_xconvert()

Prototype
C/C++ int fg_xconvert (int nColum);
C# int fg.xconvert (int nColum);
Delphi function fg xconvert (nColum : integer) : integer;
VB Function fg_xconvert (ByVal nColum As Long) As Long

VB.NET Function fg xconvert (ByVal nColumm As |Integer) As |nteger
Description

The fg_xconvert() legacy function translates a character space column to the screen space
coordinate of its leftmost pixel. Using fg_xconvert(1) is an easy way to determine the width of a
character cell in pixels.

Parameters
nColumn is the character space column to translate.
Return value
The screen space x coordinate of the leftmost pixel in the character space column nColumn.
Restrictions
none
Replaced by

Screen space

378 « Fastgraph 6.0 Reference Manual

fg_xscreen()

Prototype
C/C++ int fg xscreen (double x);
C# int fg.xscreen (double x);
Delphi function fg xscreen (x : real) : integer;
VB Function fg_xscreen (ByVal x As Double) As Long

VB.NET Function fg xscreen (ByVal x As Double) As |nteger
Description

The fg_xscreen() function translates a 2D world space x coordinate to its screen space
equivalent.

Parameters

x is the world space coordinate to translate.
Return value

The screen space x coordinate equivalent to the world space coordinate x.
Restrictions

none

See also

fg_xworld(), fg_yscreen(), fg_yworld()

Fastgraph 6.0 Reference Manual « 379

fg_xvb()

Prototype
C/C++ int fg xvb (int x);
C# int fg.xvb (int x);
Delphi function fg xvb (x : integer) : integer;
VB Function fg_xvb (ByVal x As Long) As Long

VB.NET Function fg xvb (ByVal x As Integer) As Integer
Description

The fg_xvb() function translates a client area x coordinate to the corresponding screen space x
coordinate within the active virtual buffer.

Parameters
X is the client coordinate to translate.
Return value

The screen space x coordinate corresponding to the client coordinate x. If the calling application
is not the foreground application, the return value will be —1.

Restrictions
none

See also

fg_xclient(), fg_yclient(), fg_yvb()

380 « Fastgraph 6.0 Reference Manual

fg_xview()
Prototype
C/C++ int fg xview (int xView;
C# int fg.xview (int xView;
Delphi function fg xview (xView : integer) : integer;
VB Function fg_xview (ByVal xView As Long) As Long

VB.NET Function fg xview (ByVal xView As Integer) As |Integer
Description

The fg_xview() function translates a horizontal viewport coordinate to the corresponding screen
space x coordinate.

Parameters
xView is the horizontal viewport coordinate to translate.
Return value

The screen space x coordinate corresponding to the specified viewport coordinate. If no viewport
has been defined, the return value will be equal to xView.

Restrictions
none
See also

fg_getview(), fg_setview(), fg_yview()

Fastgraph 6.0 Reference Manual « 381

fg_xworld()

Prototype
C/C++ double fg xworld (int Xx);
C# double fg.xworld (int x);
Delphi function fg xworld (x : integer) : real;
VB Function fg_xworld (ByVal x As Long) As Double

VB.NET Function fg xworld (ByVal x As Integer) As Double
Description

The fg_xworld() function translates a screen space x coordinate to its 2D world space
equivalent.

Parameters

X is the screen space coordinate to translate.
Return value

The world space x coordinate equivalent to the screen space coordinate x.
Restrictions

none

See also

fg_xscreen(), fg_yscreen(), fg_yworld()

382 « Fastgraph 6.0 Reference Manual

fg_yalpha()

Prototype
C/C++ int fg_yalpha (int y);
C# int fg.yalpha (int y);
Delphi function fg yal pha (y : integer) : integer;
VB Function fg_yal pha (ByVal y As Long) As Long

VB.NET Function fg yal pha (ByVal y As Integer) As |nteger
Description

The fg_yalpha() legacy function translates a screen space y coordinate to the character space
row containing that coordinate.

Parameters
y is the screen space coordinate to translate.
Return value
The character space row containing the screen space coordinate y.
Restrictions
none
Replaced by

Screen space

Fastgraph 6.0 Reference Manual « 383

fg_yclient()

Prototype
C/C++ int fg yclient (int y);
C# int fg.yclient (int y);
Delphi function fg yclient (y : integer) : integer;
VB Function fg_yclient (ByVal y As Long) As Long

VB.NET Function fg yclient (ByVal y As Integer) As Integer
Description

The fg_yclient() function translates a screen space y coordinate to the corresponding client area
y coordinate.

Parameters
y is the screen space coordinate to translate.
Return value
The client y coordinate corresponding to the screen space coordinate y.
Restrictions
none
See also
fg_xclient(), fg_xvb(), fg_yvb()
Examples

Fontdemo, Stringsl

384 « Fastgraph 6.0 Reference Manual

fg_yconvert()

Prototype
C/C++ int fg_yconvert (int
C# int fg.yconvert (int
Delphi function fg_yconvert
VB Function fg_yconvert
VB.NET Function fg_yconvert

Description

(nRow :

(ByVal
(ByVal

integer) : integer;
nRow As Long) As Long
nRow As Integer) As Integer

The fg_yconvert() legacy function translates a character space row to the screen space
coordinate of its top (lowest-numbered) pixel. Using fg_yconvert(1) is an easy way to determine

the height in pixels of a character cell.

Parameters

nRow is the character space row to translate.

Return value

The screen space y coordinate of the top pixel in the character space row nRow.

Restrictions
none
Replaced by

Screen space

Fastgraph 6.0 Reference Manual « 385

fg_yscreen()

Prototype
C/C++ int fg_yscreen (double y);
C# int fg.yscreen (double y);
Delphi function fg yscreen (y : real) : integer;
VB Function fg_yscreen (ByVal y As Double) As Long

VB.NET Function fg yscreen (ByVal y As Double) As |nteger
Description

The fg_yscreen() function translates a 2D world space y coordinate to its screen space
equivalent.

Parameters
y is the world space coordinate to translate.
Return value
The screen space y coordinate equivalent to the world space coordinate y.
Restrictions
none
See also

fg_xscreen(), fg_xworld(), fg_yworld()

386 « Fastgraph 6.0 Reference Manual

fg_yvb()

Prototype
C/C++ int fg_yvb (int y);

C# int fg.yvb (int y);
Delphi function fg yvb (y : integer) : integer;
VB Function fg_yvb (ByVal y As Long) As Long

VB.NET Function fg yvb (ByVal y As Integer) As I|Integer
Description

The fg_yvb() function translates a client area y coordinate to the corresponding screen space y
coordinate within the active virtual buffer.

Parameters
y is the client coordinate to translate.
Return value

The screen space y coordinate corresponding to the client coordinate y. If the calling application
is not the foreground application, the return value will be —1.

Restrictions
none
See also

fg_xclient(), fg_xvb(), fg_yclient()

Fastgraph 6.0 Reference Manual « 387

fg_yview()

Prototype
C/C++ int fg yview (int yView;

C# int fg.yview (int yView;
Delphi function fg yview (yView : integer) : integer;
VB Function fg_yview (ByVal yView As Long) As Long

VB.NET Function fg yview (ByVal yView As Integer) As |Integer
Description

The fg_yview() function translates a vertical viewport coordinate to the corresponding screen
space y coordinate.

Parameters
yView is the vertical viewport coordinate to translate.
Return value

The screen space y coordinate corresponding to the specified viewport coordinate. If no viewport
has been defined, the return value will be equal to yView.

Restrictions
none
See also

fg_getview(), fg_setview(), fg_xview()

388 « Fastgraph 6.0 Reference Manual

fg_yworld()

Prototype
C/C++ double fg yworld (int y);
C# double fg.yworld (int y);
Delphi function fg yworld (y : integer) : real;
VB Function fg _yworld (ByVal y As Long) As Double
VB.NET Function fg yworld (ByVal y As Integer) As Double
Description

The fg_yworld() function translates a screen space y coordinate to its 2D world space
equivalent.

Parameters
y is the screen space coordinate to translate.
Return value
The world space y coordinate equivalent to the screen space coordinate y.
Restrictions
none
See also

fg_xscreen(), fg_xworld(), fg_yscreen()

Fastgraph 6.0 Reference Manual « 389

fg_zballoc()

Prototype
C/C++ int fg zballoc (int nWdth, int nHeight);
C# int fg.zballoc (int nWdth, int nHeight);

Delphi function fg zballoc (nWdth, nHeight : integer) : integer;

VB Function fg_zballoc (ByVal nWdth As Long, ByVal nHei ght As
Long) As Long

VB.NET Function fg zballoc (ByVal nWdth As Integer, ByVal nHeight As
I nteger) As Integer

Description

The fg_zballoc() function creates a z-buffer of the specified size. The memory for the z-buffer is
allocated automatically.

Parameters
nWidth is the z-buffer width in pixels.
nHeight is the z-buffer height in pixels.
Return value

If successful, fg_zballoc() returns a handle by which the z-buffer is referenced. If there is not
enough free memory to create the z-buffer, fg_zballoc() returns zero.

Restrictions

none
See also

fg_ddsetup(), fg_zbframe(), fg_zbfree(), fg_zbopen()
Examples

Columns, Geometry, TMcube, TMcubeX

390 « Fastgraph 6.0 Reference Manual

fg_zbframe()

Prototype
C/C++ void fg zbframe (void);
C# void fg.zbframe ();
Delphi procedure fg_zbfrarne;
VB Sub fg_zbframe ()
VB.NET Sub fg zbfranme ()
Description
The fg_zbframe() function prepares the active z-buffer for the next animation frame.
Parameters
none
Return value
none
Restrictions
none
See also
fg_zballoc(), fg_zbfree(), fg_zbopen()
Examples
Columns, TMcube, TMcubeX

Fastgraph 6.0 Reference Manual « 391

fg_zbfree()

Prototype
C/C++ void fg zbfree (int hzB);
C# void fg.zbfree (int hzB);

Delphi procedure fg zbfree (hZB : integer);
VB Sub fg_zbfree (ByVal hZB As Long)
VB.NET Sub fg zbfree (ByVal hZB As I|nteger)
Description
The fg_zbfree() function frees the memory allocated to the specified z-buffer.
Parameters
hZB is the handle that references the z-buffer to free.
Return value
none
Restrictions
none
See also
fg_zballoc(), fg_zbframe(), fg_zbopen()
Examples

Columns, Geometry, TMcube, TMcubeX

392 « Fastgraph 6.0 Reference Manual

fg_zbopen()

Prototype
C/C++ voi d fg zbopen (int hZB);
C# voi d fg.zbopen (int hzZB);

Delphi procedure fg zbopen (hZB : integer);

VB Sub fg_zbopen (ByVal hZB As Long)

VB.NET Sub fg zbopen (ByVal hZB As I|nteger)
Description

The fg_zbopen() function makes an existing z-buffer the active z-buffer. If another z-buffer is
open when you call fg_zbopen(), that z-buffer is first closed.

Parameters

hZB is the handle that references the desired z-buffer, as returned by fg_zballoc(). It must be a
valid z-buffer handle.

Return value
none
Restrictions
The active z-buffer must be at least as large as the active virtual buffer.
See also
fg_zballoc(), fg_zbframe(), fg_zbfree()
Examples

Columns, Geometry, TMcube, TMcubeX

	Reference Manual
	Introduction
	fg_3Daxisangle()
	
	
	Parameters

	fg_3Daxisangleobject()
	fg_3Dbehindviewer()
	fg_3Dgetmatrix()
	fg_3Dgetpov()
	fg_3Dline()
	fg_3Dlookat()
	fg_3Dmove()
	fg_3Dmoveforward()
	fg_3Dmoveforwardobject()
	fg_3Dmoveobject()
	fg_3Dmoveright()
	fg_3Dmoverightobject()
	fg_3Dmoveup()
	fg_3Dmoveupobject()
	fg_3Dpolygon()
	fg_3Dpolygonobject()
	fg_3Dpov()
	fg_3Dproject()
	fg_3Drenderstate()
	fg_3Droll()
	fg_3Drollobject()
	fg_3Drotate()
	fg_3Drotateobject()
	fg_3Drotateright()
	fg_3Drotaterightobject()
	fg_3Drotateup()
	fg_3Drotateupobject()
	fg_3Dsetmatrix()
	fg_3Dsetobject()
	fg_3Dsetzclip()
	fg_3Dshade()
	fg_3Dshadeobject()
	fg_3Dtexturemap()
	fg_3Dtexturemapobject()
	
	
	Parameters

	fg_3Dtransform()
	fg_3Dtransformobject()
	fg_3Dupvector()
	fg_3Dviewport()
	fg_3Dzclip()
	fg_3Dzcliprgb()
	fg_3Dzcliptm()
	fg_arc()
	fg_arcw()
	fg_avidone()
	fg_aviframe()
	fg_avihead()
	fg_avimake()
	fg_aviopen()
	fg_avipal()
	fg_aviplay()
	fg_avisize()
	fg_aviskip()
	fg_blend()
	fg_blend50()
	fg_blenddcb()
	fg_blendvar()
	fg_blendvb()
	fg_blendvbv()
	fg_bmphead()
	fg_bmppal()
	fg_bmpsize()
	fg_box()
	fg_boxdepth()
	fg_boxw()
	fg_boxx()
	fg_boxxw()
	fg_circle()
	fg_circlef()
	fg_circlefw()
	fg_circlew()
	fg_clip2vb()
	
	
	Return value

	fg_clipdcb()
	fg_clipmap()
	fg_clipmask()
	fg_clpimage()
	fg_clprect()
	fg_clprectw()
	fg_clprectx()
	fg_colors()
	fg_contdcb()
	fg_contrgb()
	fg_contvb()
	fg_copypage()
	fg_cut()
	fg_cutdcb()
	fg_dash()
	fg_dashrel()
	fg_dashrw()
	fg_dashw()
	fg_ddapply()
	fg_ddflip()
	fg_ddflipnw()
	fg_ddframe()
	fg_ddfreedc()
	fg_ddgetdc()
	fg_ddgetobj()
	fg_ddgetversion()
	fg_ddlock()
	fg_ddmemory()
	
	
	Prototype

	fg_ddrestore()
	
	
	Prototype
	Parameters

	fg_ddsetblt()
	
	
	Prototype

	fg_ddsetobj()
	fg_ddsetup()
	fg_ddsetversion()
	
	
	Restrictions

	fg_ddstatus()
	fg_ddunlock()
	fg_ddusage()
	fg_defcolor()
	
	
	Parameters

	fg_defpal()
	fg_dispfile()
	fg_display()
	fg_displayp()
	fg_draw()
	fg_drawdcb()
	fg_drawmap()
	fg_drawmask()
	fg_drawrel()
	fg_drawrelx()
	fg_drawrw()
	fg_drawrxw()
	fg_draww()
	fg_drawx()
	fg_drawxw()
	fg_drawz()
	fg_drect()
	fg_drectw()
	fg_drwimage()
	fg_ellipse()
	
	
	Return value

	fg_ellipsef()
	fg_ellipsew()
	fg_ellipsfw()
	fg_erase()
	fg_fillpage()
	fg_findrgb()
	fg_fixdiv()
	fg_fixed()
	fg_fixmul()
	fg_fixtrig()
	fg_flicdone()
	fg_flichead()
	fg_flicopen()
	fg_flicplay()
	fg_flicsize()
	fg_flicskip()
	fg_flipdcb()
	fg_flipmask()
	fg_float()
	fg_flood()
	fg_floodw()
	fg_flpimage()
	fg_fontdc()
	fg_fontload()
	
	
	Restrictions

	fg_gammadcb()
	fg_gammargb()
	fg_gammavb()
	fg_gdiflip()
	fg_getblock()
	fg_getclip()
	fg_getclock()
	fg_getcolor()
	fg_getdacs()
	fg_getdc()
	fg_getdcb()
	fg_getdepth()
	fg_gethcbpp()
	fg_gethpage()
	fg_getimage()
	fg_getindex()
	fg_getline()
	fg_getlines()
	fg_getmap()
	fg_getmaxx()
	fg_getmaxy()
	fg_getpage()
	fg_getpixel()
	fg_getrgb()
	fg_getview()
	fg_getworld()
	fg_getxbox()
	fg_getxjust()
	fg_getxpos()
	fg_getybox()
	fg_getyjust()
	fg_getypos()
	fg_gouraud()
	fg_gouraudz()
	fg_graydcb()
	fg_grayrgb()
	fg_grayvb()
	fg_imagebuf()
	fg_imagesiz()
	fg_initw()
	fg_inside()
	fg_invdcb()
	fg_invert()
	fg_jpegbuf()
	fg_jpeghead()
	fg_jpegmem()
	fg_jpegsize()
	fg_justify()
	fg_kbtest()
	
	
	Examples

	fg_loadpcx()
	fg_locate()
	fg_logfont()
	fg_logpal()
	fg_makebmp()
	fg_makepcx()
	fg_makeppr()
	fg_makespr()
	fg_mapdacs()
	fg_maprgb()
	fg_measure()
	fg_memavail()
	fg_modeset()
	fg_modetest()
	fg_mousecur()
	fg_mouseini()
	fg_mouselim()
	fg_mousemov()
	fg_mousepos()
	fg_mouseptr()
	fg_mousesiz()
	fg_mousevis()
	fg_move()
	fg_move3d()
	fg_moverel()
	fg_moverw()
	fg_movew()
	fg_opacity()
	fg_pack()
	fg_pagesize()
	fg_paint()
	fg_paintw()
	fg_paste()
	fg_pastedcb()
	fg_pcxhead()
	fg_pcxpal()
	fg_pcxrange()
	fg_pcxsize()
	fg_photodcb()
	fg_photorgb()
	fg_photovb()
	fg_point()
	fg_pointw()
	fg_pointx()
	fg_pointxw()
	fg_polyedge()
	fg_polyfill()
	fg_polyfilz()
	fg_polygon()
	fg_polygonw()
	fg_polyline()
	fg_polyoff()
	fg_print()
	fg_printdc()
	
	
	Prototype

	fg_printer()
	fg_project()
	fg_putblock()
	fg_putdcb()
	fg_putimage()
	fg_putpixel()
	fg_realize()
	fg_rect()
	fg_rectw()
	fg_rectx()
	fg_reduce()
	fg_restore()
	fg_restorew()
	fg_revdcb()
	fg_revimage()
	fg_revmask()
	fg_rotate()
	fg_rotate3d()
	fg_rotdcb()
	fg_rotsize()
	fg_save()
	fg_savew()
	fg_scale()
	
	
	Return value

	fg_scaledcb()
	fg_scroll()
	fg_setalpha()
	fg_setangle()
	fg_setclip()
	
	
	Prototype

	fg_setclipw()
	fg_setcolor()
	fg_setcolorrgb()
	fg_setdacs()
	fg_setdc()
	fg_sethpage()
	fg_setpage()
	fg_setratio()
	fg_setrgb()
	fg_setsize()
	fg_setsizew()
	fg_setview()
	fg_setworld()
	fg_shear()
	fg_sheardcb()
	fg_showavi()
	fg_showbmp()
	fg_showflic()
	fg_showjpeg()
	
	
	Parameters
	Return value

	fg_showpcx()
	fg_showppr()
	fg_showspr()
	fg_stall()
	fg_swchar()
	fg_swlength()
	fg_swtext()
	fg_tcdefine()
	fg_tcmask()
	
	
	Restrictions

	fg_tcxfer()
	fg_texmap()
	fg_texmapp()
	fg_texmappz()
	fg_texmapz()
	fg_text()
	fg_texture()
	fg_tmdefine()
	fg_tmevict()
	fg_tmfree()
	fg_tminit()
	fg_tmselect()
	fg_tmspan()
	fg_tmtransparency()
	fg_tmunits()
	fg_transdcb()
	fg_transfer()
	fg_trig()
	fg_unmaprgb()
	fg_unpack()
	fg_vb2clip()
	fg_vbaddr()
	fg_vballoc()
	fg_vbclose()
	fg_vbcolors()
	fg_vbcopy()
	fg_vbdefine()
	fg_vbdepth()
	fg_vbfin()
	fg_vbfree()
	fg_vbhandle()
	fg_vbinit()
	fg_vbopen()
	fg_vbpaste()
	fg_vbprint()
	fg_vbscale()
	fg_vbsize()
	fg_vbtccopy()
	fg_vbtcopy()
	fg_vbtzcopy()
	fg_vbundef()
	fg_version()
	
	
	Restrictions

	fg_view3d()
	fg_waitfor()
	
	
	See also

	fg_where()
	fg_xalpha()
	fg_xclient()
	fg_xconvert()
	fg_xscreen()
	fg_xvb()
	fg_xview()
	fg_xworld()
	fg_yalpha()
	fg_yclient()
	fg_yconvert()
	fg_yscreen()
	fg_yvb()
	fg_yview()
	fg_yworld()
	fg_zballoc()
	fg_zbframe()
	fg_zbfree()
	fg_zbopen()

